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Введение. Во многих областях математики играют важную роль неравен-
ства, которые позволяют оценивать нормы промежуточных производных функ-
ций одной и многих переменных через нормы самих функций и нормы произ-
водных более высокого порядка. Особенно важны неравенства неулучшаемые,
т.е. неравенства с наименьшей константой. Для функций одной переменной в
равномерной метрике наиболее полным результатом и сегодня остаётся неравен-
ство Колмогорова, которое было получено в 1939 г. Поэтому неравенства для
промежуточных производных часто называют неравенствами типа Колмогоро-
ва. К настоящему моменту времени известно значительное количество точных
неравенств типа Колмогорова для функций одной переменной [1, 2]. Задача на-
хождения наилучшей константы в неравенстве типа Колмогорова сводится к
некоторой экстремальной задаче. Такие экстремальные задачи могут решаться
различными методами. В работе рассматриваются некоторые из них: вариаци-
онные методы исчисления и метод оптимальных управлений.

Цель работы. Целью этой работы является рассмотрение неравенств Кол-
могорова и применение принципа Лагранжа для получения определенного клас-
са точных неравенств Колмогорова.

Объем и структура работы. Бакалаврская работа состоит из введения,
четырех глав, заключения и списка литературы. Первая глава - вводные све-
дения, которая содержит основные обозначения, термины и понятия, исполь-
зуемые в этой работе. Вторая глава называется постановка изопериметриче-
ской задачи, посвящена постановке изопериметрической задачи и вариационно-
му способу её решения (принцип Лагранжа). Третья глава - неравенство Ада-
мара. Четвертая глава - оптимальное управление при решении экстремальных
задач. Состоит из разделов: задача оптимизации, экстремальные траектории,
асимптоты линии переключения, зависимость от параметра и оптимальность
управления.

Основное содержание работы.
Глава 1. В первой главе выпускной работы вводится неравенство Колмого-

рова, точное неравенство Колмогорова, доказывается предложение о выполне-
нии неравенства типа Колмогорова при соотношениях между k, n, p, q, r.

Рассмотрим следующее семейство экстремальных задач, определенных на
W n

pr(I):
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f0(x) = ‖x(k)‖Lq(I) → sup,

f1(x) = ‖x‖Lp(I) ≤ 1, (1)

f2(x) = ‖x(n)‖Lr(I) ≤ 1.

Задачу (1) будем называть общей задачей о неравенствах для производных.
При некотором соотношении между k, n, p, q, r возможны неравенства следую-
щего вида:

‖x(k)‖Lq(I) ≤ K‖x‖αLp(I)
‖x‖βLr(I)

, (2)

где α, β ∈ Q.

Определение 1. Задачу о нахождении наилучшей константы в неравенстве
(2) будем называть задачей о неравенстве типа Колмогорова. Неравенство (2)
с наилучшей константой будем называть точным.

Предложение 1. Неравенство (2) (при фиксированных k, n, p, q, r) справедли-
во, лишь если

α = α(p, q, r, k, n) =
n− k − r−1 + q−1

n− r−1 + p−1
,

β = β(p, q, r, k, n) =
k − q−1 + p−1

n− r−1 + p−1
.

Глава 2. В этой главе рассматривается изопериметрическая задача и её
решение с помощью принципа Лагранжа.

Определение 2. Основной изопериметрической задачей называется экстре-
мальная задача следующего вида:

J0(x(·)) =

t1∫
t0

f0(t, x(t), ẋ(t), ..., xn(t)) dt→ extr

Ji(x(·)) =

t1∫
t0

fi(t, x(t), ẋ(t), ..., xn(t)) dt ≤ 1, i = 1, ...,m;

где fi(t, x(t), ẋ(t), ..., xn(t)), i = 1, ...,m - данные функции n + 1 переменных,
называемые интегрантами. Отрезок [t0, t1] предполагается фиксированным.
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Определение 3. Экстремум функционала ищется среди функций x ∈ Cn[t0, t1],
удовлетворяющих изопериметрическим условиям. Такие функции называют-
ся допустимыми в изопериметрической задаче.

Определение 4. Функцией Лагранжа для данной задачи будет следующая
функция

L =

t1∫
t0

m∑
i=0

λifi(t, x(t), ẋ(t), ..., xn(t)) dt.

Определение 5. Лагранжианом задачи называется функция

L = L(t) = L(t, λ) =
m∑
i=0

λifi(t, x(t), ẋ(t), ..., xn(t)).

Теорема 1. Пусть функция xt доставляет слабый локальный экстремум в
изопериметрической задаче в пространстве Cn[t0, t1]. Тогда найдутся множи-
тели Лагранжа λ0, λ1, ..., λm, не все равные нулю и такие, что справедливы
следующие условия:

1) стационарности по x - уравнение Эйлера-Пуассона для лагранжиана

m∑
i=0

(−1)k
(
d

dt

)k
L(k)(t) = 0

2) трансверсальности по x

Lẋ0(t0) = 0

Lẋ0(t1) = 0

3) дополняющей нежесткости

t1∫
t0

fi(t, x(t), ẋ(t), ..., xn(t)) dt = 1, i = 1, ...,m;

4) неотрицательности

λ ≥ 0, i = 1, ...,m.

Задача 1. Рассмотрим функционалы следующего вида:
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Is(x) =


1∫
−1
|x(t)|s dt = ‖x‖ss, 1 ≤ s <∞,

vraimax
t∈[−1,1]

|x(t)| = ‖x‖∞, s =∞,

Ĩs(x) =


π∫
−π
|x(t)|s dt, 1 ≤ s <∞,

vraimax
t∈[−π,π]

|x(t)|, s =∞,

Задачи можно записать в следующем виде:

Is(x)→ sup, Ip(x
(r)) ≤ 1;

Ĩs(x)→ sup, Ĩp(x
(r)) ≤ 1,

x(k)(−π) = x(k)(π), 0 ≤ k ≤ r − 1.

Их будем называть основными изопериметрическими задачами.

Определение 6. Величины I−1/ss (xnrps) и Ĩ−1/ss (x̃nrps) обозначим соответствен-
но λnrps и λ̃nrps. Их совокупность назовем спектром задач.

Положим λnrps = 0 при 0 ≤ n ≤ r − 1 и рассмотрим случай r = 1.

Теорема 2. Спектр задачи (1) при r = 1, 1 ≤ n <∞, 1 < s <∞ имеет вид

λn1ps = Γpsn, n = 0, 1, 2, ...,

где

Γps = 21−( 1
s+

1
p′ )s

1
s (p′)

1
p′

(
1

s
+

1

p′

) 1
s+

1
p′

×
Γ
(

1 + 1
s′

)
Γ
(

1 + 1
p

)
Γ
(

1 + 1
s + 1

p′

)
Γ(x) - гамма функция и (p′)−1 + p−1 = 1.

Решение задачи, основанное на применении принципа Лагранжа, разбивает-
ся на несколько стандартных этапов [6, 7].
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Глава 3. В этой главе рассмотрено неравенство Адамара [10, 11]

‖ẋ‖L2(R+) ≤ K‖x‖1/2L2(R+)
‖ẍ‖1/2L2(R+)

. (3)

и показано с помощью нескольких теорем, что K =
√

2 является наилучшей
константой.

Теорема 3. Пусть x ∈ L2(R+), производная ẋ локально абсолютно непрерывна
и ẍ ∈ L2(R+). Тогда неравенства

‖ẋ‖L2(R+) ≤
√

2‖x‖1/2L2(R+)
‖ẍ‖1/2L2(R+)

и
‖ẋ‖2L2(R+)

≤ ‖x‖2L2(R+)
+ ‖ẍ‖2L2(R+)

эквивалентны.

Теорема 4. Пусть x ∈ L2(R+), производная ẋ локально абсолютно непрерывна
и ẍ ∈ L2(R+). Тогда следующее неравенство справедливо:

‖ẋ‖2L2(R+)
≤ ‖x‖2L2(R+)

+ ‖ẍ‖2L2(R+)
.

Теорема 5. Пусть x ∈ L2(R), производная ẋ локально абсолютно непрерывна
и ẍ ∈ L2(R). Тогда следующее неравенство справедливо:

‖ẋ‖2L2(R) ≤ ‖x‖
2
L2(R) · ‖ẍ‖

2
L2(R).

Неравенство Адамара на полуоси рассмотрим теперь как задачу вариаци-
онного исчисления. Вычисление константы Колмогорова равносильно нахожде-
нию точного решения задачи:

∞∫
0

ẋ2(t) dt→ max,

∞∫
0

x2(t) dt ≤ γ1,

∞∫
0

ẍ2(t) dt ≤ γ2

Для этой задачи по предложению 1 имеет место неравенство (3)
Действительно,

α = α(p, q, r, k, n) =
n− k − r−1 + q−1

n− r−1 + p−1
=

2− 1− 1
2 + 1

2

2− 1
2 + 1

2

=
1

2
,

β = β(p, q, r, k, n) =
k − q−1 + p−1

n− r−1 + p−1
=

1− 1
2 + 1

2

2− 1
2 + 1

2

=
1

2
.

6



Положим γ1 = γ2 = 1
2 . Тогда задача принимает следующий вид:

∞∫
0

ẋ2(t) dt→ max,

∞∫
0

[x2(t) + ẍ2(t)] dt ≤ 1

Решение задачи, основанное на применении принципа Лагранжа, разбивает-
ся на несколько стандартных этапов [6, 7, 8].

И в итоге доказано, что K =
√

2 является наилучшей константой, а нера-
венство

‖ẋ‖L2(R+) ≤
√

2‖x‖1/2L2(R+)
‖ẍ‖1/2L2(R+)

является точным.
Глава 4. Данная глава посвящена задаче, которая применяется в радиофи-

зике для оценки потери качества сигнала при управлении [12].
Рассмотрим функционал следующего вида, который оценивает величину пе-

реходных искажений сигнала в линейных системах автоматического регулиро-
вания:

J =

∞∫
0

(a2b2 + b2ẋ2) dt

или

J =

T∫
0

(a2b2 + b2ẋ2) dt,

Были построены оптимальные траектории для указанного функционала:

T∫
0

(x21 + β2x22) dt =

T∫
0

(x1 + βx2)
2 dt− 2β

T∫
0

x1x2 dt.

Первый член правой части минимален при x1+βx2 = 0, а второй зависит только
от начальной и конечной точек, а не от траектории, соединяющей эти точки.
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Рисунок 1 — Оптимальные траектории

По траекториям движение происходит к началу координат и возможно лишь
в пределах отрезка |x1| ≤ β2(1 + β2)−1 из-за ограничения |u| ≤ 1. Этот отрезок
обозначен O′O′′(См. Рисунок 1).

Изображены линия переключения и экстремальные траектории (См. Рису-
нок 2). Линия переключения - гладкая кривая с горизонтальными асимптотами

x2 =
4

π(1 + β2)
при x1 < 0 и x2 = − 4

π(1 + β2)
при x1 > 0
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Рисунок 2 — Линия переключения

Линия переключения может пересекать свои асимптоты. В частности, при
β ≥ 4

π отрезок O′O′′ пересекает прямые x2 = ±η0. Если точка переключения
лежит на границе полосы x2 = ±η0, то и все её последующие также удовлетво-
ряют условию |x2| = η0. Однако на конечном отрезке может быть лишь конечное
число таких пересечений.

Оптимальность управления.
Полученное экстремальное управление u(t) принадлежит L2(0,∞). Так как

найденное экстремальное управление единственно, то оно и является оптималь-
ным [15].

Рассмотрим теперь случай, когда один из коэффициентов a, b равен нулю.
Пусть a = 0, тогда особый отрезок O′O′′ переходит в отрезок [−1, 1] оси абс-

цисс, и движение вдоль него невозможно. Управление u = const может удер-
живать фазовую точку на этом отрезке, при этом на отрезке [−1, 1] величина
J не возрастает. Значит, оптимальная задача может быть сформулирована как
задача приведения фазовой точки на отрезок [−1, 1] оси абсцисс за T - конечное
время с минимальным значением J . Таким образом, рассматриваемый функци-
онал примет вид:

J =

T∫
0

ẋ dt→ min .

Предложение 2. Оптимальное управление в этой постановке существует.
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Теорема 6. Предел последовательности линий Lβ при β → 0 существует и
будет являться линией переключения при β = 0.

Заключение. Целью работы были рассмотрение неравенств Колмогорова и
применение принципа Лагранжа для получения определенного класса точных
неравенств Колмогорова. В работе рассмотрено неравенство Адамара, которое
относится к неравенствам типа Колмогорова. Применив принцип Лагранжа,
была указана наилучшая константа для неравенства Адамара, и доказано, что
оно является точным.
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