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Введение. Существует несколько причин, по которым квазиконформные
отображения в последнее время стали играть очень активную роль в теории
аналитических функций одной комплексной переменной.

1. Самая поверхностная причина в том, что квазиконформные отображения
являются естественным обобщением конформных отображений. Если бы это
было их единственным утверждением, они бы вскоре были забыты.

2. На ранней стадии было замечено, что многие теоремы о конформных отоб-
ражениях используют только квазиконформность. Поэтому представляет инте-
рес определить, когда квазиконформные является существенным, и когда это
не так.

3.квазиконформные отображения сопоставления менее жесткие, чем кон-
формные отображения, и поэтому их гораздо проще использовать в качестве
инструмента. Это было характерно для утилитарной фазы теории. Например,
он был использован для доказательства теорем о конформном типе односвязных
Римановых поверхностей (теперь в основном забытых).

4.квазиконформные отображения играют важную роль в изучении некото-
рых эллиптических уравнений в частных производных.

5. Экстремальные задачи в q.c. отображения приводят к аналитическим
функциям, связанным с областями или Римановыми поверхностями. Это бы-
ло глубокое и неожиданное открытие из-за Тейхмюллеру.

6. Проблема модулей была решена с помощью q.c. отображения. Они также
проливают свет на Фуксовых и Клейновых групп.

7. Конформные отображения вырождаются при обобщении на несколько пе-
ременных, но q.c. сопоставления не делают. Эта теория все еще находится в
зачаточном состоянии.

Основные задачи.Основными задачами данной работы являются: Понятие
квазиконформного отображения было введено Г. Грёчем в 1928 году в связи со
следующей задачей. Если Q– квадрат и R – прямоугольник, не являющийся
квадратом, то не существует конформного отображения Q на R, переводящего
вершины в вершины. Грёч поставил вопрос о построении такого отображения,
наиболее близкого к конформному.

Краткое содержание работы. Для этого понадобилось ввести меру бли-
зости отображения к конформному, и, введя такую меру, Грёч сделал первый
шаг к созданию теории квазиконформных отображений.

Вернемся к определению Гёрча

Пусть ω = f(z)(z = x + iy, ω = u + iv) – гомеоморфизм класса C1одной
области на другую. В точке z0 он порождает линейное отображение дифферен-
циалов
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Которое можно записать также в комплексной форме

dw = fzdz + fzdz (0.1)

Где
Геометрически (1) представляет собой аффинное отображение плоскости (dx, dy)

на плоскость (du, dv)
Оно переводит круги с центром в начале координат в подобные эллипсы. Вы-
числим отношение длин осей этих эллипсов и их направление.

В классических обозначениях

du2 + dv2 = Edx2 + 2Fdxdy +Gdy2 (0.2)

Где
E = u2

x + v2
x; F = uxvy; G = u2

y + v2
y

Соответствующие собственные значения определяются из уравнения∣∣∣∣E − λ F
F G− λ

∣∣∣∣ (0.3)

и равны

λ1, λ2 =
E +G± [(E −G)2 + 4F 2]1/2

2
(0.4)

Отношение
a

b
осей эллипсов равно

(
λ1

λ2

)1/2

=
E +G[(E −G)2 + 4F 2]1/2

2(EG− F 2)1/2
(0.5)

Здесь гораздо удобнее использовать комплексные обозначения. Сначала заме-
тим, что

fz =
1

2
(ux + vy) +

i

2
(vx − uy)

fz =
1

2
(ux − vy) +

i

2
(vx + uy)

(0.6)

Это дает
|fz|2 − |fz|2 = uxvy − vxvy = J (0.7)

т. е. якобиан отображения w = f(z). Якобиан положителен для отображе-
ний, сохраняющих ориентацию, и отрицателен для отображений, меняющих
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ориентацию. Рассмотрим сначала только случай сохранения ориентации, когда
|fz| < |fz|.

Из (1.2) следует, что

(|fz| − |fz|)|dz| ≤ |dw| ≤ (|fz|+ |fz|)|dz| (0.8)

причем обе оценки могут достигаться. Мы получаем, что отношение большой
оси к малой равно

Df =
|fz|+ |fz|
|fz| − |fz|

≥ 1 (0.9)

величина называется отклонением в точке z. Часто удобнее рассматривать ве-
личину

df =
|fz|
|fz|

< 1 (0.10)

связанную с Df соотношениями

Df =
1 + df
1− df

; df =
Df − 1

Df + 1
(0.11)

Отображение конформно в точке z тогда и только тогда, когда Df = 1, df = 0.

Максимум величины
∣∣∣∣dwdz

∣∣∣∣ достигается, когда отношение

fzz

fzdz

Положительно, а минимум – когда оно отрицательно. Введем теперь комплекс-
ная дилатация

µf =
fz
fz

(0.12)

Где µf = df . Тогда максимум
∣∣∣∣dwdz

∣∣∣∣ соответствует направлению

arg dz = α =
1

2
arg µf (0.13)

минимум – направлению α ± π

2
Учитывая это, из (1.1) находим направление

большой оси получаемого в плоскости dw эллипса

arg dω = β =
1

2
(0.14)
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где мы положили

vf =
fz

fz
=

(
fz
|fz|

)2

uf

Величину vf назвать вторым комплексным отклонением.
Пояснением к сказанному может служить следующий рисунок, смысл которого
ясен сам по себе:
Легко видеть, что β - α=arg fz

Определение 0.1. Отображение f называется квазиконформным, если Df

ограничено. Оно называется К-квазиконформным, если Df ≤ K. Условие Df ≤
K эквивалентно следующему df ≤ k = (K − 1)/(K + 1). Очевидно, что 1-
квазиконформное отображение конформно.

0.1 Решение задачи Греча

Вернемся теперь к задаче Греча и придадим ей точным смысл, считая отоб-
ражение f наиболее близким к конформному, если supDf принимает наимень-
шее возможное значение. Пусть R′,R′-два прямоугольника со сторонами a, b и
a′, b′.Можно это считать, что, a : b ≤ a′ : b′ (в противном случае надо поме-
нять местами ab). При этом предположим, что стороны, равен ,переходят при
отображение f в стороны, равные a′ а сторпоны,равные b - в стороны, b′

вычисления дают

a′ ≤
a∫

0

|df(x+ iy)| ≤
a∫

0

(|fz|+ |fz|)dx
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a′b ≤
a∫

0

b∫
0

(|fz|+ |fz|)dxdy

a′2b′2 ≤
a∫

0

b∫
0

|fz|+ |fz|
|fz| − |fz|

dxdy =

a∫
0

b∫
0

(|fz|2|fz|2)dxdy = a′b′
a∫

0

b∫
0

Dfdxdy

или
a′

b′
:
a

b

a∫
0

b∫
0

1

ab
Dfdxdy (0.15)

Откуда
a′

b′
:
a

b
≤ supDf

Минимум величины supDf достигается для аффинного отображения

f(z) =
1

2
(
a′

a
+
b′

b
)z +

1

2
(
a′

a
+
b′

b
)fz

Величина стоящая в правой части соотношения (1) называется средним отклю-
нением отображения f в R - прим ред Итак, доказана

Теорема 0.1. в задаче Греча экстремальным является аффинное отображе-
ние,имеющее Наименьшее максимальное и наименьшее среднее отклонения.

Отношенияm =
a

b
иm′ =

a′

b′
называются модулями прямоугольников RR′(с

учетом ориентации ). Мы доказали, что К-квазиконформное отображение RR′
существует тогда и только тогда, когда

1

K
≤ m′

m
≤ K. (0.16)

0.2 Суперпозиции отображении

Определим теперь комлексные проиводные и комплексные отклонения су-
перпозиции отображений g ◦f. Для удобства обозначений введем промеждуточ-
ноную переменную ξ = f(z)

Применяя правила дифференцирования сложной функции, находим

(g ◦ f)z = (gξ ◦ f)fz + (gξ ◦ f)fz

(gξ ◦ f)fz = (gξ ◦ f)fz + (gξ ◦ f)fz
(0.17)
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Отсюда получаем

gξ ◦ f =
1

J
[(g ◦ f)zfz − (g ◦ f)z − (g ◦ f)zfz]

gξ ◦ f =
1

J
[(g ◦ f)zfz − (g ◦ f)zfz]

(0.18)

Где J = f−1 приходим к формулам

(f−1)ξ ◦ f = fz|J, (f−1)ξ ◦ f = −fz|J (0.19)

Отсюда, например, получаем

µf−1 = −vf ◦ f−1 (0.20)

и, переходя к абсолютным величинам,

df−1 = df ◦ f−1 (0.21)

Другим словами,взаимно обратные отображения имеют в соответствующих точ-
ках одинаковое отклонение. Из (1.19) получаем

µg ◦ f =
fz
fz
.
µg◦f − µf
1− µfµg◦f

(0.22)

Если g конформное,то µg = 0 и

µg◦f = µf (0.23)

Если f конформное,то µf = 0 и

µg ◦ f =
( f ′
|f ′|

)2

µg◦f (0.24)

Что можно переписать в виде

vg◦f = vg◦f (0.25)

В любом случае отклонение инвариантно по отношению к конформным отобра-
жениям.

Полагая g ◦ f = h, находим из (1.23), что

µh◦f−1 ◦ f =
fz
fz
.
µh − µf
1− µfµh

(0.26)
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Откуда

dh◦f−1 ◦ f =

∣∣∣∣ µh − µf1− µfµh

∣∣∣∣ (0.27)

и
logDh◦f−1 = [µh, µf ], (0.28)

Где [ ,] - неевклидово расстояние (в метрике ds = 2|dω|/(1− |ω|2) при |ω| < 1
Мы можем, очевидно, ввести в качестве расстояния между отображениями

f и h величину sup[µh, µf ]
(расстояние Тейхмюллера). Это будет метрика при условии отожедествление
отображений получающихся друг из друга конформным преобразованием.

Для проверки этого утверждения достаточно заметить, что суперпозиция
K1-квазиконформного и K2-квазиконформного отображении является K1K2-
квазиконформным отображением.

0.3 Экстремальная длина

Пусть Γ-кривых на плоскости. Предполагается, что каждая кривая γ ∈ Γ
является объединением счетного числа открытых дуг, замкнутых дуг или за-
мкнутых кривых и локально спрямляема. Введем геометрическую характери-
стику λ(Γ), называемую экстремальной длиной семейства Γ. Ее важность для
наших рассмотрений объясняется ее инвариантностью при конформных отобра-
жениях и квазиконформных отображениях (последнее означает, что при таких
отображениях она умножается на ограниченный множитель).

Функцию ρ определенную во всей плоскости, мы будем называть допустимой,
если она удовлетворяет следующим условиям:

1)ρ ≥ 0 и измерима
2)A(ρ) =

∫ ∫
ρ2dxdy 6= 0,∞ (интеграл берется по всей плоскости)

Для такой функции ρ положим

Lγ(ρ) =

∫
γ

ρ|dz|

если ρ измерила на L(ρ) =∞ в противном случай. Положим

L(ρ) = inf
γ∈Γ

Lγ(ρ)

Определение 0.2. Экстремальной длиной семейства Γ называется

λ(Γ) = sup
ρ

L(ρ)2

A(ρ)
,
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где sup берется по всем допустмым ρ.
Будем говорить, что Γ1 < Γ2, если каждая кривая γ2 ∈ Γ2содержит неко-

торую (т.е класс беднее, а его кривые длиннее

Замечание Отметим, что из Γ1 ⊂ Γ2 вытекает Γ2 < Γ1!

Определение 0.3. Если Γ1 < Γ2 то λ(Γ1) ≤ λ(Γ2).

Доказательство. Если γ1 ∈ γ2 то

Lγ1(ρ) ≤ Lγ2(ρ),

inf Lγ1(ρ) ≤ inf Lγ2(ρ),

откуда немедленно следует, что λ(Γ1) ≤ λ(Γ2) �

Пример 1.1. Пусть Γ – совокупность всех кривых в замкнутом прямоуголь-
нике R, соединяющих пару противоположных сторон, например стороны длины
b.

Для любой функции ρ

a∫
0

ρ(x+ iy)dx ≤ L(ρ)

∫
R

∫
ρdxdy ≤ bL(ρ)

b2L(ρ)2 ≤ ab

∫
R

∫
ρ2dxdy ≤ abA(ρ),

L(ρ)2

A(ρ)
≤ a

b

Это значит, что λ(Γ) ≤ a/b
С другой стороны, положим ρ = 1 в R, ρ = 0 вне R. Тогда L(ρ) = a, A(ρ)−ab,

поэтому λ(Γ) ≤ a/b, Итак, мы доказали, что

λ(Γ) =
a

b
.

Пример 1.2. Пусть Γ-совокупность всех кривых в кольце γ1 ≤ |z| ≤ γ2,
соединяющих граничные окружности

9



Произведем вычисление:
r2∫
r1

ρdrL(ρ)

∫ ∫
ρdrdθ ≤ 2πL(ρ),

4π2L(ρ)2 ≤ 2π log
r2

r1

∫ ∫
ρ2rdrdθ

,
L(ρ)2

L(ρ)
≤ r1

r2

. Равенство достигается для ρ =
1

r
Пример 1.3. Модуль кольца.
ПустьG – двусвязная область в конечной плоскости, и пусть C1-ограниченная

C1-неограниченная компонента дополнения к G. . Будем говорить, что замкну-
тая кривая γ ⊂ G разделяет C1 и C2, если γ имеет ненулевой индекс относи-
тельно точек c1. Пусть Γ - семейство замкнутых кривых в G, разделяющих C1 и
C2 Модулем области G называется число M(G)=Модулем области G называется
числоM(G) = λ(Γ)−1 Рассмотрим, например, кольцоG = {r1 ≤ |z| ≤ r2} Имеем

L(ρ) ≤
2π∫

0

ρ(reiθ)rdθ,

L(ρ)

r
≤

2θ∫
0

ρdθ,

L(ρ) log
r2

r1
≤
∫ ∫

ρdrdθ,

L(ρ)2 log2 r2

r1
≤ 2π log

r2

r1

∫ ∫
ρ2rdrdθ,

L(ρ)2

A(ρ)
≤ 2π

log(r2/r3)
.

С другой стороны, для ρ = 1/2θr реализуется равенство. В самом деле, для
любой γ ∈ Γ имеем

1 ≤ |n(γ, 0)| = 1

2π

∣∣∣∣∣∣
∫
γ

dz

z

∣∣∣∣∣∣ ≤ 1

2π

∫
γ

|dz|
|z|

= Lρ(γ).
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Поэтому L(ρ) = 1 и A(ρ) =
1

2π
log

r2

r1
. Мы заключаем, что M(G) =

1

2π
log

r2

r1
.

Предположим, что все γ ∈ Γ содержатся в некоторой области содержатся в
некоторой области Ω, и пусть ϕ-некоторое К-квазиконформное отображение Ω
на Ω′. Пусть Γ′-образ семейства кривых Γ.

Теорема 0.2. K−1λ(Γ) 6 λ(Γ′) 6 Kλ(Γ).

Доказательство. Для данной функции ρ(z) определим ρ′(ξ), полагая ρ′(ζ) = 0
вне Ω и

ρ′(ξ) =
ρ

|ϕz| − |ϕz|
◦ ϕ−1

в Ω′. Тогда ∫
γ′

ρ′|dζ| ≥
∫
γ

ρ|dz|,

∫ ∫
ρ′2dζdη =

∫
Ω

∫
ρ2 |ϕz|+ |ϕz|
|ϕz| − |ϕz|

dxdy ≤ KA(ρ)

Этим доказано, что λ′ ≥ K−1λ, неравенство получается при рассмотрении об-
ратного отображения. �

Следствие 0.1. Величинаλ(Γ) является конформным инвариантом.
Приведем два важных принципа композиции семейств кривых. В первом

из них
Γ1 + Γ2 = (γ1 + γ2|γ1 ∈ Γ1, γ2 ∈ Γ2),

во втором Γ1 ∪ Γ2 означает обычное объединение.

Теорема 0.3. Если Γ1 и Γ2 расположены соответственно в непересекающихся
измеримых множествах E1, E2 то

a) λ(Γ1 + Γ2) ≤ λ(Γ1) + λ(Γ2)
b)λ(Γ1 ∪ Γ2)

−1 ≤ λ(Γ1)
−1 + λ(Γ2)

−1.

Доказательство. a) Мы можем считать, что 0 < λ(Γ1), λ(Γ2) < ∞, ибо в
противном случае неравенство тривиально.

Произведем нормировку так, чтобы иметь

L1(ρ1) = A(ρ1),

L2(ρ2) = A(ρ2),

Выберем ρ = max(ρ2, ρ2). Тогда

L(ρ) ≥ L1(ρ1) + L2(ρ2) = A(ρ1) + A(ρ2),
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A(ρ) ≤ A(ρ1) + A(ρ2)

λ = sup
L(ρ)2

A(ρ)
≥ A(ρ1) + A(ρ2) =

L1(ρ1)
2

A(ρ1)
+
L2(ρ2)

2

A(ρ2)
.

Отсюда следует, что λ ≥ λ1 + λ2

b)Если λ = λ(Γ ∪ Γ) = 0, то доказывать нечего. Рассмотрим некоторую
допустимую функцию ρ для которой L(ρ) > 0, и положим ρ1 = ρ на E1, ρ2 = ρ
на E2, 0 в остальных точках. Тогда L1(ρ1) ≥ L(ρ), L2(ρ2) ≥ L(ρ) и A(ρ) =
A(ρ1) + A(ρ2). таким образом,

A(ρ)

L(ρ)2
≥ A(ρ1)

L1(ρ1)2
+

A(ρ2)

L2(ρ2)2

и, следовательно,
λ−1 ≥ λ−1

1 + λ−1
2 ,

что и требовалось доказать. �

12


	Решение задачи Греча
	Суперпозиции отображении
	Экстремальная длина

