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Введение. Обработка изображений играет важную роль в современном
мире и применяется в множестве областей: науке, промышленности, искус-
стве, медицине и может осуществляться как для получения изображения на
выходе (например, подготовка к полиграфическому тиражированию, к те-
летрансляции и т.д.), так и для получения другой информации (например,
распознавание текста, подсчёт числа и типа клеток в поле микроскопа и т.д.).

В данной работе будет рассмотрено одно из направлений обработки изоб-
ражений - их улучшение. Под улучшением изображения понимают визуаль-
ное (заметное глазом) улучшение качества изображения (коррекция яркости
и контраста, цветокоррекция и т.п.); объективное улучшение качества изоб-
ражения (устранение искажений типа дисторсия, размытие, шум, расфоку-
сировка и т.п.);

Цель бакалаврской работы: рассмотрение методов обработки цифровых
изображений, основанных на частотном анализе и вейвлет-анализе.

Задачи:

1. Ввести понятия цифрового изображения, рассмотреть различные цве-
товые модели представления цифровых изображений.

2. Дать определение преобразования Фурье и вейвлет-преобразования Ха-
ара (а также дискретный, быстрый и двумерный случаи) и дать оценку
сложности в терминах O.

3. Рассмотреть различные алгоритмы обработки изображений, основан-
ные на этих преобразованиях и провести анализ результата их действия
на изображения.

4. Программно реализовать описываемые алгоритмы.

Во введении обоснована актуальность исследования, показана практиче-
ская значимость работы, определена цель, сформулированы задачи.

Первая глава «Основные понятий обработки изображений» состоит из
двух разделов, в которых даются различные определения цифрового изоб-
ражения, рассматриваются часто используемые цветовые модели, вводится
понятие обработки частотной и пространственной области, градационного
преобразования.

Вторая глава «Преобразование Фурье» состоит из четырех разделов, в ко-
торых даются определения прямого и обратного преобразования Фурье, рас-
сматривается алгоритм быстрого преобразования Фурье и их расширения на
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двухмерные случаи. Так же дается сравнительная оценка вышеперечислен-
ных преобразований в терминахO. Рассматриваются понятия Фурье-спектра,
его сдвига и приводятся примеры преобразования Фурье от двухмерных изоб-
ражений.

Третья глава «Фильтрация в частотной области» состоит из двух разде-
лов, которые включают в себя описание алгоритмов размытия изображения
и выделения границ, основанные на фильтрации в частотной области.

Четвёртая глава «Вейвлет-анализ» состоит из четырёх разделов, в кото-
рых вводятся основные понятия вейвлет-анализа, даются определения пира-
миды изображений и преобразования Хаара (а так же выводится быстрый
алгоритм его вычисления), проводится сравнительный анализ сложности в
терминах O. Так же описываются алгоритмы шумоподавления и выделения
границ, основанные на преобразовании Хаара.

В заключении проводится сравнительный анализ расмотренных алгорит-
мов, выделяются их плюсы и минусы.

Бакалаврская работа состоит из введения, 4 глав, заключения, списка ис-
пользованных источников и двух приложений. Общий объем работы – 79
страниц, из них 56 страниц – основное содержание, включая 36 рисунков и
список использованных источников из 20 наименований.

Основное содержание бакалаврской работы. В первой главе «Ос-
новные понятия обработки изображений» дается определение цифрового
изображения как дискретной фунции f : R2 → Rd, где константа d определя-
ется размерностью цветовой модели. Так же изображение можно рассматри-
вать в виде матрицы размерности N ×M , где ∀ x ∈ [0, N − 1], y ∈ [0,M − 1]

значение функции f(x, y) будет находиться на пересечении x-той строки и
y-того столбца.

Цветовой моделью называют некую систему координат, в которой каждый
цвет задан единственным вектором. Для представления изображений будем
использовать модели Grayscale (градации серого) и RGB (цвет задан красной,
зеленой и синей компонентой).

Обработкой (фильтрацией) изображения f называют получение на его
основе изображения g(x, y) ≡ T (f(x, y)), где T - оператор, определенный в
каждой точке (x, y) и называемый фильтром.
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Различают два вида операций по обработке (фильтрации) изображений:
обработку в пространственной области и обработку в частотной области.
Примером простейших пространственных операторов являются операторы
градационного преобразования [3]. Например, логарифмическое преобразо-
вание описывается как T (x) = c log(1 + x), (c ≡ const).

Пороговым преобразованием называют функцию, в общем случае за-

данную уравнением вида: p(x, c) =

0, |x| < c

T (x), |x| ≥ c
, при этом различают

жёсткое и мягкое пороговое преобразование. При жёстком преобразовании
T (x) ≡ x, а при мягком преобразовании в качестве T (x) берется некото-
рое градационное преобразование. При правильно подобранных коэффициен-
тах мягкое пороговое преобразование позволяет избежать разрыва значений
вблизи порога, характерного для жёсткого преобразования.

Во второй главе «Преобразование Фурье» вводятся понятия прямого и об-
ратного преобразования Фурье (для краткости будем рассматривать только
дискретные случаи):

Определение 2.1. Фурье-преобразование дискретной функции одной пере-
менной f(x), где x = 0, N − 1, задается равенством:

F (u) = ∆t
N−1∑
x=0

f(x)e

−2πiux

N (2.1)

где ∆t =
1√
N

, u = 0, N − 1. F (u) называется Фурье-образом функции f(x).

Равенство (2.1) называют дискретным преобразованием Фурье (ДПФ).

Теорема 2.1. (Обратное ДПФ). Вектор (f(0), . . . , f(N−1)) можно восста-
новить по дискретному спектру (2.1) с помощью обратного ДПФ, опреде-
ляемого формулой

f(x) = ∆v
N−1∑
u=0

F (u)e

2πiux

N (2.2)

где ∆v =
1

N∆t
, x = 0, N − 1.

Определение 2.2. Определение 2.1 можно расширить на двухмерный слу-
чай, как для прямого, так и для обратного ДПФ:
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F (u, v) = ∆t
N−1∑
x=0

M−1∑
y=0

f(x, y)e
−2πi

(
ux

N
+
vy

M

)
(2.3)

f(x, y) = ∆v
N−1∑
u=0

M−1∑
v=0

F (u, v)e
2πi

(
ux

N
+
vy

M

)
(2.4)

где ∆t =
1√
NM

, ∆v =
1

NM∆t
, x = 0, N − 1, y = 0,M − 1.

Сложность алгоритма ДПФ составляет O
(
N 2M 2

)
.

Теорема 2.2. Применив одномерное ДПФ к каждому вектору-строке, а
затем к каждому вектору-столбцу, получим тот же самый результат,
что и в результате преобразования (2.3).

Cложность одномерного ДПФ (2.1), расширенного на двухмерный случай
с помощью данного метода равна O

(
N 2M +NM 2

)
.

Рассмотрим ДПФ вида (2.1) для одномерного вектора размерности 2n,

обозначив ωn = e

−2πi

2n . Запишем ненормированное ДПФ, т.е. ∆tF̃ (u) = F (u)

и обозначим

f0 =
(
f(0), f(2), . . . , f(2n − 2)

)
=
(
f0(0), f0(1), . . . , f0(2

n − 1)
)

f1 =
(
f(1), f(3), . . . , f(2n − 1)

)
=
(
f1(0), f1(1), . . . , f1(2

n − 1)
)

– вектора четных и нечетных компонент вектора f соответственно. Получаем:

F̃ (u) =
2n−1−1∑
x=0

(
f(2x)ωu2xn + f(2x+ 1)ωu(2x+1)

n

)
=

=
2n−1−1∑
x=0

f0(x)ωuxn−1︸ ︷︷ ︸
Обозначим F̃0(u)

+ωuxn

2n−1−1∑
x=0

f1(x)ωuxn−1︸ ︷︷ ︸
Обозначим F̃1(u)F̃ (u) = F̃0(u) + ωunF̃1(u)

F̃ (u+ 2n−1) = F̃0(u)− ωunF̃1(u)
k = 0, 2n−1 − 1 (2.5)
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Формулы (2.5) задают быстрое преобразование Фурье (БПФ), имеющее
сложность O(N log2N).

БПФ очевидно расширяется и на двухмерный случай, в котором слож-
ность оценивается как O(NM log2(NM))

Подставив формулу Эйлера в ДПФ, увидим, что каждый элемент фурье-
преобразования состоит из суммы по всем значениям функции f(x). Значе-
ния функции f(x), в свою очередь, умножаются на синусы и косинусы разных
частот. Область значений переменной u, на которой принимает свои значения
функция F (u), естественно назвать частотной областью, поскольку значе-
ние переменной u определяет частоты слагаемых, составляющих преобразо-
вание.

Величины |F (u)| =
√
Re2(F (u)) + Im2(F (u)) называют Фурье-спектром.

Теорема 2.3. (Циклический сдвиг вправо.) Сдвигу компонент вектора

f = (f(0), f(1), . . . , f(N − 1)) → f ′ = (f(N − 1), f(0), f(1), . . . , f(N − 2))

соответствует такое изменение в области дискретного спектра

F = (F (0), F (1), . . . , F (N − 1)) → F ′ = (F ′(0), F ′(1), . . . , F ′(N − 1))

что ∀u : F ′(u) = e

−2πiu

N F (u).

Следствие. Домножение f(x, y) на (−1)x+y смещает центр фурье-спектра в
точку с координатами (u0, v0), где u0 = M/2, v0 = N/2.

Частоты в фурье-преобразовании связаны с скоростью изменения яркости
на изображении. Низкие частоты, отвечающие точкам вблизи начала коорди-
нат фурье-преобразования, соответствуют медленно меняющимся компонен-
там изображения. По мере удаления от начала координат, высокие частоты
начинают соответствовать быстрым изменениям яркости, которые соответ-
ствуют границам объектов и шуму.

В третей главе «Фильтрация в частотной области» рассматриваются ал-
горитмы фильтрации, основанные на ДПФ.

Процедура фильтрации в частотной области проста и состоит из следую-
щих шагов:
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1. Исходное изображение умножается на (−1)x+y, чтобы центрировать его
фурье-преобразование.

2. Вычисляется ДПФ F (u, v) изображения, полученного после шага 1.
3. Функция F (u, v) умножается на функцию фильтра H(u, v).
4. Вычисляется обратное ДПФ от результата шага 3.
5. Выделяется вещественная часть от результата шага 4.
6. Результат шага 5 умножается на (−1)x+y.

H(u, v) называется фильтром т.к. он подавляет некоторые частоты пре-
образования, оставляя при этом другие без изменения. Низкочастотными и
высокочастотными фильтрами называются фильтры, оставляющие только
низкие и высокие частоты соответственно (и ослабляющие высокие и низкие
частоты соответственно).

Обозначим через D(u, v) =
√

(u− u0)2 + (v − v0)2 расстояние от точки с
координатами (u,v) до центра изображения.

Фильтр вида H(u, v) =

1, D(u, v) ≤ r

0, D(u, v) > r
, где r – радиус,называется иде-

альным низкочастотным фильтром.

Рисунок 3.1 — Оригинал изображения (слева), изображение, к которому
был применен идеальный низкочастотный фильтр при r = 15 (справа)

Для изображений, к которым был применен идеальный фильтр, характе-
рен «звон», выражающийся в появлении ложных контуров вокруг реальных.
Это объясняется тем, что ДПФ от H(u) = sinc(x).

Фильтр вида H(u, v) = e

−D2(u, v)

2r2 называется Гауссовым фильтром низ-
ких частот.
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Рисунок 3.2 — Оригинал изображения (слева), изображение, к которому
был применен низкочастотный фильтр Гаусса при r = 5 (справа)

Высокочастотные фильтры получаются из низкочастотных путём их ин-
вертирования, т.е. H1(u, v) = 1 − H(u, v). После их применения останутся
только высокочастотные составляющие, соответствующие границам объек-
тов на изображениях.

Рисунок 3.3 — Оригинал (слева),
результат работы идеального высокочастотного фильтра (в центре)

и высокочастотного фильтра Гаусса (справа)

В четвёртой главе «Вейвлет-анализ» вводится понятие пирамиды изобра-
жений и вейвлет-преобразовании Хаара.

Определение 4.1. Изображение, представленное в нескольких масштабах,
называют пирамидой изображений [7]. В основании (на n-ном слое) этой
пирамиды находится оригинальное изображение f (n), имеющее размеры 2n×
2n на остальных слоях ∀ i = n− 1, 0 находятся уменьшенные изображения
f (i), имеющее размеры 2i × 2i.

Использование пирамидальной структуры данных в алгоритмах обработ-
ки изображений имеет две основные цели:
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1. Сокращение времени обработки изображений
2. Определение более точных начальных приближений для обработки

нижних уровней по результатам обработки верхних уровней.

Определение 4.2. [10] Функция ψ ∈ L2, имеющая нулевое среднее значе-
ние:

−∞∫
−∞

ψ(t)dt = 0

называется вейвлетом.

Определение 4.3. Вейвлет с параметром растяжения m и параметром
сдвига n обозначается ψn,m и может быть получен из вейвлета ψ (назы-
ваемого «материнским вейвлетом») следующим образом:

ψn,m(t) =
1√
m
ψ

(
t− n
m

)
Определение 4.4. Свёртка функции f с вейвлетом ψ называется
вейвлет-преобразованием и обозначается как

W (x) = (f ? ψ)(x) =

−∞∫
−∞

f(t)ψ(x− t)dt

Вейвлет-преобразование переводит сигнал из временного представления в
частотно-временное (частотно-пространственное).

Определение 4.5. Вейвлет-преобразование W дискретной функции одной
переменной f(x), где x = 0, N − 1 задается равенством:

f(x) =
N−1∑
j=0

W (j)ϕj(x)

и называется дискретным вейвлет-преобразованием (ДВП) [12].
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Определение 4.6. Функция

χ(t) =


1, t ∈

[
0, 12
)

−1, t ∈
[
1
2 , 1
)

0, t /∈ [0, 1)

(4.6)

называется функцией Хаара.

Определение 4.7. Вейвлет Хаара получается из «материнской» функции
следующим уравнением:

χn,m(t) = χ(2nt−m) (4.7)

Определение 4.8. [14] Дискретное вейвлет-преобразование, в котором в
качестве вейвлета используется вейвлет Хаара, называется дискретным
преобразованием Хаара (ДПХ), обозначается H(x) и задается формулой

f(x) =
N−1∑
j=0

H(j)χj(x) (4.8)

Двумерное ДВП определяется аналогично двухмерному ДПФ (с.м. тео-
рему 2.2). Сложность одномерного и двухмерного ДВП составляет O(N 2) и
O
(
N 2M +NM 2

)
соответсвенно.

Определение 4.9. Пусть

(λn) = (λ0, λ1, . . . , λ2N−1−1, λ2N−1, . . . , λ2N−1)

есть вектор значений функции fN . Равенства

λj :=
1

2
(λ2j + λ2j+1) где j = 0, 2N−1 − 1

λ2N−1+j :=
1

2
(λ2j − λ2j+1) где j = 0, 2N−1

(4.9)

называют быстрым дискретным преобразованием Хаара (БПХ).
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Определение 4.10. Равенства

λ2j := λj + λj+2N−1 где j = 0, 2N−1 − 1

λ2j+1 := λj − λj+2N−1 где j = 0, 2N−1
(4.10)

называют обратным БПХ [16].

Сложность одномерного и двухмерного БПХ равна O (2N) и O(4NM)

соответственно.
Под n-кратным двухмерным вейвлет-преобразованием понимается приме-

нение N раз двухмерного вейвлет-преобразования, причём очередное двух-
мерное вейвлет-преобразование применяется к младшей четверти матрицы
(квадрат LL).

Рисунок 4.1 — Обозначения областей изображения при трёхкратном
применении двухмерного вейвлет-преобразования к изображению [18]

В области LL находится уменьшенное в два раза изображение, в областях
LH, HL и HH находятся коэффициенты, отвечающие за резкие перепады в
интенсивности по вертикали, горизонтали и диагонали соответственно.

Основанный на вейвлет-анализе общий метод устранения шума (т.е. по-
давления шумовой составляющей) состоит в следующем:

1. Вычисляется n-кратное ДПХ изображения f .
2. Коэффициенты деталей подвергаются пороговому преобразованию. при

этом может использоваться как жёсткое, так и мягкое пороговое пре-
образование.

3. Производится обратное преобразование, восстанавливающее изображе-
ние по полученным на шаге 2 коэффициентам.
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Рисунок 4.2 — изображение с равномерным шумом (слева), сглаженное
изображение (справа)

Алгоритм обнаружения границ объектов с помощью вейвлет-анализа вы-
глядит следующим образом:

1. Вычисляется n-кратное ДПХ изображения f .
2. Обнуляется область LL.
3. (Опционально) Если требуется найти только горизонтальные или вер-

тикальные границы, то обнуляется область LH или HL соответственно.
4. Производится обратное преобразование, восстанавливающее изображе-

ние по полученным на шаге 4 коэффициентам.

Рисунок 4.3 — Изображение с обнулённой областью LL (слева), и с
обнулёнными областями LL и LH (справа)

Данный алгоритм имеет большой недостаток по сравнению с схожим алго-
ритмом, основанным на преобразовании Фурье. Линии, выделяющие границы
объектов, теряют свою «плавность» при увеличении кратности преобразова-
ния Хаара. Это объясняется локальностью частотных составляющих в ДПХ.
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Рисунок 4.4 — Восстановленные изображения с обнулённой областью LL
при значениях n = 4, 5 соответственно

Заключение. В данной бакалаврской работе было введено понятия циф-
рового изображения, рассмотрены различные цветовые модели представле-
ния цифровых изображений. Было дано определение преобразования Фурье и
вейвлет-преобразования Хаара (а также дискретный, быстрый и двухмерный
случаи) и дана оценка сложности в терминах O. Были рассмотрены различ-
ные частотные и пространственные фильтры и анализ результата их действия
на изображения.

При сравнении алгоритмов удаления шума и обнаружения границ объек-
тов, основанных на преобразованиях Фурье и Хаара, были выделены основ-
ные плюсы и минусы этих преобразований:

• БПХ, в отличие от БПФ, имеет линейную, а не логарифмическую слож-
ность, что сильно ускоряет работу основанных на нём алгоритмов.
• БПХ гораздо проще в понимании и вычислении благодаря простым

арифметическим операциям.
• Алгоритм выделения границ объектов, основанный на БПХ позволя-

ет выделять различные направления границ (всенаправленные, верти-
кальные, горизонтальные).
• Алгоритм выделения границ объектов, основанный на БПХ дает нечет-

кие границы объектов, захватывая область вокруг них. Это связано с
локальностью коэффициентов преобразования Хаара. Алгоритм, осно-
ванный на БПФ таким недостатком не обладает.

В приложениях 1 и 2 приведены исходные коды программ реализующих
темы, рассмотренные в этой работе.
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