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ВВЕДЕНИЕ 

Комбинированные динамические системы (КДС) представляют собой 

математические модели в форме связанных посредством граничных условий и 

условий связи систем обыкновенных дифференциальных уравнений и 

уравнений в частных производных при соответствующих начальных условиях 

[1]. Модельные уравнения управляемых КДС зависят от параметров обратных 

связей [2-7]. Параметрический синтез – это процесс, который заключается в 

выборе параметров обратных связей, с целью обеспечения быстрого затухания 

переходных процессов [2-7]. Как правило, области устойчивости управляемых 

КДС с упруго деформируемыми объектами управления с распределенными по 

пространству параметров характеризуются малой протяженностью в 

пространстве параметров обратных связей, и для них был предложен 

адаптивный алгоритм параметрического синтеза, позволяющий более 

эффективно подавлять ошибки стабилизируемых систем. Вместе с тем, 

управляемые КДС с поддерживающими и демпфирующими слоями жидкости 

характеризуются гораздо большей протяженностью областей устойчивости в 

пространстве параметров обратных связей, и для них был предложен другой 

вариант адаптивного алгоритма параметрического синтеза. Примером 

подобной КДС является плавающая гиростабилизированная платформа. 

 Гиростабилизированная платформа включает в себя внешнюю 

сферическую камеру, внутри которой находится сферическая платформа, а 

между камерой и платформой протекает вязкая несжимаемая жидкость. Внутри 

сферической платформы находятся гироскопы, турбонасос, который 

прокачивает жидкость, и корректирующее устройство. Математическая модель 

гиростабилизированной платформы представляет собой комбинированную 

динамическую систему, и после линеаризации и выполнения интегрального 

преобразования Лапласа по времени сводится к матрице передаточных 

функций. При проектировании навигационных систем требуется, чтобы 
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переходные процессы в плавающей гиростабилизированной платформе 

достаточно быстро затухали, а характерное значение углов, характеризующих 

ошибку, не превышало 2 угловых секунд. В данном случае выбор параметров 

корректирующего устройства необходимо выполнять на основе 

параметрического синтеза. Как следует из результатов работы [2], в 

высокочастотной области характеристический и возмущающий 

квазимногочлены КДС с поддерживающими и демпфирующими слоями вязкой 

несжимаемой жидкости гарантированно являются аналитическими функциями 

параметра преобразования Лапласа, а в низкочастотной аналитичность 

характеристического и возмущающего квазимногочленов КДС легко может 

быть проверена численно [1]. Это позволяет применять эффективно 

реализуемые параллельные алгоритмы параметрического синтеза. 

Следовательно, при моделировании и параметрическом синтезе плавающей 

гиростабилизированной платформы сначала можно применить упрощенные 

математические модели поддерживающих и демпфирующих слоев жидкости, а 

затем, после предварительного выполнения параметрического синтеза и 

исследования эффективности его адаптивного варианта, в том числе и после 

исследования эффективности распараллеливания адаптивного алгоритма, 

перейти к использованию уточненных моделей слоев жидкости. Вместе с тем, 

упрощенная модель не учитывает эффекты перетекания жидкости между 

отдельными каналами плавающей гиростабилизированной платформы, которые 

могут оказать влияние на передаточные функции системы стабилизации и 

несколько изменить характерное значение максимальной угловой ошибки. 

Моделирование подобных эффектов требует разработки модели 

поддерживающего слоя на основе трехмерных уравнений Навье-Стокса 

динамики вязкой несжимаемой жидкости. 

Целью работы является: 1) моделирование устойчивости КДС 

гиростабилизированной плавающей платформы с поддерживающим слоем 

жидкости; 2) параметрический синтез плавающей гиростабилизированной 

платформы с целью снижения величины угловой ошибки, а также исследование 
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эффективности его распараллеливания на симметричных мультипроцессорных 

системах с общей памятью; 3) оценка влияния перетекания жидкости между 

рабочими каналами на передаточные функции поддерживающего слоя и 

системы в целом. 

Требуется решить следующие задачи: 1) разработка уточненной модели 

поддерживающего слоя на основе трехмерных уравнений Навье-Стокса 

динамики вязкой несжимаемой жидкости; 2) моделирование устойчивости и 

параметрический синтез плавающей гиростабилизированной платформы на 

основе упрощенной математической модели поддерживающего слоя вязкой 

несжимаемой жидкости; 3) исследование эффективности распараллеливания 

вычислений при реализации параметрического синтеза на симметричных 

мультипроцессорных системах с общей памятью; 4) разработка алгоритмов 

численного решения модельных краевых задач для трехмерных упрощенных 

уравнений Навье-Стокса с целью анализа влияния перетеканий жидкости;  5) 

численное моделирование и анализ влияния перетеканий жидкости между 

рабочими каналами на передаточные функции (в частности, вещественные 

частотные характеристики) поддерживающего слоя и платформы в целом.  
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1 Основное содержание 

Математическая модель, представляющая собой совокупность 

обыкновенных дифференциальных уравнений (ОДУ), связанных с ними через 

граничные условия (ГУ) и условия связи (УС) уравнений в частных 

производных (УЧП), а также начальных условий (НУ), называется 

комбинированной динамической системой (КДС) [1]. С точки зрения инженера 

и проектировщика, наибольший интерес представляют т.н. КДС с 

сосредоточенными входными и выходными вектор-функциями, структурная 

схема которой представлена на рисунке 1. 

 

Рисунок 1 - Схема КДС. 

Здесь ( )tx , : xNx   и ( )ty , : yNy сосредоточенные входная и 

выходная вектор-функции, причем в набор y  включены обобщенные 

координаты и скорости всех объектов с сосредоточенными по пространству 

параметрами; rNr  представляет собой совокупность независимых 

координат, позволяющих указать некоторую индивидуальную точку того или 

иного объекта с распределенными по пространству параметрами; rN , 

S  суть области, занимаемые объектами с распределенными по 

пространству параметрами и их границы; ( , )tu r , : r uN Nu  

обозначает распределенную выходную вектор-функцию и представляет собой, 
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например, совокупность полей перемещений и скоростей объектов с 

распределенными по пространству параметрами; символ ( )th , : hNh

соответствует условиям связи и представляет собой, например, совокупность 

сил и моментов сил, действующих через границы раздела со стороны объектов 

с распределенными по пространству параметрами на объекты с 

сосредоточенными по пространству параметрами. Символически, модельные 

уравнения, соответствующие схеме на рисунке 3, могут быть представлены в 

виде    

 ( , , )y f x y h   (1.1.1)  

 ( , , , ),  u u x y y r   (1.1.2)   

 ( , ) 0
S

u y   (1.1.3)  

 ( )
S

dSh u   (1.1.4) 

 0 0(0) ,  ( , 0) ( )y y u r u r   (1.1.5) 

  

Здесь : y yx h
N NN Nf ; дифференциальные операторы , 

содержащие частные производные / r , 2 2/ r  (и, возможно, более 

высокого порядка) по независимым пространственным переменным, действуют 

на функции ( , )tu u r  и соответствуют уравнениям в частных производных 

(УЧП), описывающим движение объектов с распределенными по пространству 

параметрами; операторы , возможно, содержат частные производные / r  

(и, возможно, более высокого порядка), действуют на функции ( , )tu u r  и 

соответствуют граничным условиям (ГУ), поставленным на границе объектов с 

распределенными по пространству параметрами. Входящие в (2.4)операторы  

содержат производные / r  и, возможно, более высокого порядка, действуют 

на поля перемещений и скоростей ( , )tu r  объектов с распределенными по 

пространству параметрами и переводят их в элементарные поверхностные силы 

и элементарные моменты поверхностных сил ( )dSu . 
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Вектор-функция f  и операторы  в модельных уравнениях (1.1) – (1.5) 

не зависят от времени t , а зависимость от времени t  сказывается лишь 

посредством входной вектор-функции ( )tx . Такие КДС называются 

стационарными. 

После линеаризации и выполнения одностороннего интегрального 

преобразования Лапласа по времени t
0

( ) ( ) ( ) tf t f f t e dt на основе 

предложенного в [1, 2] алгоритма динамическая модель КДС сводится к 

матрице передаточных функций ( ) , причем 

 
( ) ( , ) ( )

( ) [ ( )] [ ( ) / ( )]kj kjQ D

y p x
,  

Здесь ( )D  –характеристический квазимногочлен, ( )
kj
Q  – 

возмущающие квазимногочлены. 

 

Под параметрическим синтезом [1, 4] понимается процедура подбора 

величин параметров обратных связей 
1 2( , ,..., ) p

p

NT
Np p pp

 (и, возможно, 

некоторых других конструктивных параметров) с целью обеспечения быстрого 

затухания переходных процессов, т.е. требуемого качества переходных 

функций 
[ ( )]jh t

. 

Рассмотрим линейную стационарную КДС, характеризующуюся 

матрицей передаточных функций ( , ) [ ( , )]jp p  размерности y xN N . 

Пусть| (0, ) |j p , (0, )j p . Обозначим следующим образом нормы 

столбцов матрицы (0, )p  

 
1/2

2
1

( ) ,  1,2,...,(0, )yN
j xj
A j Np p   (1.2.1) 
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Сопоставим матрице ( , )p  действительную матрицу 

( , ) [ ( , )]
jA AR Rp p  размерности y xN N  и действительную диагональную 

матрицу 
* *( ) diag{ ( )}

jA AR R   размерности
x xN N : 

 
2

Re ( , ),  ( ) 0
( , )

1 Re ( , ),  ( ) 0j

j j
A

j j

i A
R

i A

p p
p

p p
  (1.2.2) 

  

 

*
*

2 *

( ),  ( ) 0
( )

1 ( ),  ( ) 0

( , ) ( , ) / ,  1,2,..., ,  1,2,...,

j

j
A

j

j j y x

R A
R

R A

N j N

p

p

p p

    (1.2.3) 

 
* * 2 4

0 0( ) Re ( ) [1 ( ) ] / [1 ( ) ]R i t t  

Пусть норма матрицы [ ]jB b    размерности  
1 2N N   суть 

1 2

1/2
2

1 1
| |

N N

jj
bB  

В процессе параметрического синтеза выполняется минимизация 

функции [1, 5-7] 

  

22 *
0 10

22
* *

2

(0, ) ( , )( , ) (0, ) ( )

( ) ,  (0, ) ( ) ( , ) (0, ) ( )
1,  

A AA A A

stA A A A A

st

C cR RR R R

F dcR R R R R
M

p pp p
p pp p p

p

2

0 0(0, )A
C R p ,  () ()/d d  

Известно [8] описание трехслойной системы угловой стабилизации 

плавающей сферической платформы в сферической камере с электрическими 

двухфазными индукционными двигателями стабилизации. Согласно 

приведенной в данном описании структурной схеме контура управления 

сферический слой вязкой несжимаемой жидкости рассматривается в режиме 

ползущего течения с учетом только сил вязкого трения. В работе [9] показано, 

( ) minF p



 9 

что учет сил инерции в сферическом слое вязкой несжимаемой жидкости 

существенно влияет на выбор корректирующего устройства в контуре 

стабилизации, а также значительно подавляет колебания платформы, 

возбуждаемые угловой качкой корпуса прибора. Более того, динамический 

анализ и выбор параметров дискретно-континуальной модели 

гироскопического стабилизатора со сферической плавающей платформой и 

электрическими двигателями стабилизации могут быть проведены на основе 

теории комбинированных динамических систем [10] по аналогии с 

исследованием гироскопического интегратора линейных ускорений с 

плавающей платформой. В работе [11, стр. 389] отмечено, что дальнейшие 

повышение точности пространственных гиростабилизаторов со сферической 

плавающей платформой привело к применению разгрузочного устройства, 

содержащего внутри платформы турбонасос и на наружной поверхности 

платформы. Турбонасос, непрерывно прокачивая вязкую несжимаемую 

жидкость, отводит внутри платформы теплоту от гироскопов. При этом 

отсутствие электрических двигателей стабилизации, позволяющей обеспечить 

высокую стабильность электрических и магнитных полей, а также температуры 

среды, окружающей гироскопы.  

Конструктивная схема плавающей гиростабилизированной платформы 

приведена  на рис. 2. Пусть система координат 𝑂𝑥𝑦𝑧связана со сферической 

платформой с радиусом сферической поверхности 𝑅. Центр 𝑂 плавающей в 

вязкой несжимаемой жидкости платформы совпадает с центром сферической 

камеры с радиусом, где 𝛿   есть зазор между сферическими поверхностями 

камеры и платформы. Внутри платформы установлены поплавковые 

интегрирующие гироскопы (ПИГ) и турбонасос. Турбонасос непрерывно 

прокачивает потоки вязкой несжимаемой жидкости через подключённые по 

дифференциальной схеме рабочие каналы гидродинамических двигателей 

стабилизации (ГДС). Длина каждого канала 𝑙 = 0.25 𝛱𝑅,ширина𝑏 =  0.2𝑅, 

глубина ℎ << 𝑏. Оси чуствительности ПИГ совпадают с осями системы 

координат Oxyz, а оси прецессии ПИГ перпендикулярны этим осям. 
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Рисунок 2 – Конструктивная схема 

Пусть при времени 𝑡 ≤ 0система координат Oxyz совпадает с некоторой 

не вращающейся относительно инерциального пространства системой 

координат Ox0y0z0и корпус, содержащий сферическую камеру, тоже 

неподвижен относительно Ox0y0z0. Предполагается, что при 𝑡 > 0 корпус, 

содержащий сферическую камеру, поворачивается относительно системы 

координат Ox0y0z0 и возмущает через сферический слой жидкости и скользящие 

по стенке камеры токопроводы весьма малое движение платформы с 

абсолютными угловыми скоростями. 

 x    , y    , z     

ПИГ интегрируют угловые скорости , ,x y z    и подают через усилители 

напряжения , ,x y zU U U на золотниковые переключатели, которые распределяют 

потоки жидкости в рабочие каналы так, чтобы ГДС компенсировали 

возмущающие моменты , ,x y zM M M , обусловленные вращением стенки камеры 

с угловыми скоростями , ,x y z   . 

Так как углы Эйлера-Крылова , ,   весьма малы, то в первом 

приближении принимаем , ,x y z        . Аналогично [4], после 

линеаризации и выполнения одностороннего интегрального преобразования 

R


y

x

x

Mx

O

P0 P0

P0

P2

P2 P1

P1

P0

h

z0

z

x0

x

z

x

y

Mz

Mx

My

z

y

x


..

.


O


y0

y








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Лапласа по времени t
0

( ) ( ) tf f t e dt


   математическая модель плавающей 

гиростабилизированной платформы сводится к матрицам передаточных 

функций. Матричное уравнение движения в изображениях по Лапласу при 

нулевых начальных условиях записывается в виде 

 2

1

( ) ( ( ))( )

( ( ( ) ( ) ( ) ( ) ( )) ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

x s x

L u k y s y

z s z

L sign t

I L sign t

L sign t



 

          

  



    
                 
          

  (1.3.1) 

где    произвольная комплексная переменная интегрального 

преобразования Лапласа; I   момент инерции платформы относительно 

главных центральных осей , ,x y z ; ( )    передаточная функция момента 

касательных гидродинамических напряжений на сферической поверхности 

платформы, обусловленных поворотами платформы относительно системы 

0 0 0Ox y z ; ( )L    передаточная функция корректирующего устройства; ( ) 

передаточная функция возмущающих гидродинамических моментов , ,x y zM M M ; 

sL   момент сил трения токопроводов платформы, скользящих по стенкам 

камеры,   оператор интегрального преобразования Лапласа; 1( ) 

передаточная функция ПИГ, которая применительно к индикаторному 

гидростабилизатору представляются[10] в форме  

 1( )
( 1)

k

T


 
 


 ,                      (1.3.2) 

где k передаточный коэффициент, а постоянная времени T  имеет 

порядок 3(10 )O c  . 

В качестве корректирующего устройства примем простейшее 

интегродифференцирующее звено первого порядка  

 
1

2

1
( )

1
k







 


                 (1.3.3) 

Передаточную функцию золотникового переключателя примем в виде 

апериодического звена с постоянной времени uT  и коэффициентом усиления uk  
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    ( )
1

u
u

u

k

T
 


   (1.3.4)  

Передаточная функция ГДС представима в виде: 

2
1 1 1

2

( )
( ) 4 ( ) ( ) 1

( ) [2 ( )]
L RbhS

l b


  

    

 
    

  
              (1.3.5)  

2

0
1

2( )(1 )
( ) ,

1 ( )

mP P

S






 
 


2

0

0

2 ( )
( ) ( ) ( )(1 )m

b h
S P P

Q l


   




   , 

3

2

( ) 1
2

( ) ( )

( )

ch

sh




   
   






  ,      3/2

(( ) ) 1
2

( ) ( )

(( ) )

ch h

h
sh h




   
   




 

 




 

где /    коэффициент кинематической вязкости жидкости, ,  

соответственно плотность и коэффициент вязкости жидкости, 0P  давление во 

входной камере турбонасоса,  0Q постоянный секундный расход,  

4

2

25
1 3 2

1

4 2

3 3

5
1 3

1

8 3
( ) [ (1 ) ( )

3 4

( )
4 ( ) ( )(1 ) 4 ( )](1 ),

( )

8 3
( ) (1 ) ( ) [4 ( )

3 4

( )
4 ( ) ( )(1 )](1 )

( )

b
R

R

RbhS blR S
Rb R

b
R blR S

R

h
RblhS

bR R



   

 
   

 

     


 

 

   


   

    


    

                  (1.3.6) 

Система соотношений (1.5.2)-(1.5.6) образуют математическую модель 

первого приближения пространственной гироскопической системы угловой 

стабилизации индикаторного типа плавающей платформы с 

гидродинамическими двигателями стабилизации, которая представима в форме 

2

2

( ) ( ( ))( )

( ) ( ) ( ) ( ) ( ( )) ,

( ) ( ) ( ( ))

( ) ( )
( ) , ( ) , ( ) ( ) ( ),

( ) ( )

( ) ( ( ))( 1)( 1)( 1)

x s x

y S s y

z s z

s

u u u

L sign t

L sign t

L sign t

Q Q
Q Q

D Q

D I T T k k




  

    
            
          

     

       

 

    

  

 
    

 

        1

2

( )( 1)

( ) ( 1)( 1)( 1)uQ T T



   

  

    

         (1.3.7) 
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Здесь ( ), ( )S    передаточные функции ошибок системы угловой 

стабилизации платформы, обусловленных соответственно гидродинамическими 

возмущениями моментов и моментом сил трения электрических контактов 

токопроводов платформы о сферическую стенку камеры; ( )D    

характеристический квазимногочлен; ( )Q    возмущающий квазимногочлен; 

( )Q    возмущающий многочлен. 

Квазимногочлены ( ), ( )D Q  и многочлен ( )Q   аналитичны на мнимой оси 

и в правой половине плоскости ( ) и выполняются условия 

2 25 3 3

( )( ) ( )
Re( ) 0 : lim 0, lim 0, lim ,

( , ) : ( ) Re( ( )) Im( ( )) 0,Re( ( )) Re ( ),

Im( ( )) Im( ( ))

u u

QD Q
ITT TT

D i D i i D i D i D i

D i D i

  

 
  

  

     

 



  
     

        

  

      (1.3.8) 

Согласно известным теоремам об асимптотической устойчивости, а также 

об устойчивости и неустойчивости квазирациональной дроби, передаточные 

функции математической модели (1.5.8) в форме квазирациональных дробей 

будут асимптотически устойчивыми, если приращения аргументов функции 

( )D i при монотонном возрастании  до   равно 

 arg ( ) 5 / 2.D i                  (1.3.9) 

Математическая модель (1.5.8) является неустойчивой, если равенство 

(1.5.9) не выполняется. 

Более того, математическая модель (1.5.8) будет на границе области 

устойчивости при ( ) 0D i  . Следуя методу D-разбиений, который был 

рассмотрен в главе 1, определим далее параметрические уравнения границ 

области устойчивости системы. Полагая Re ( ) 0, Im ( ) 0D i D i   и решая эти 

уравнения относительно постоянных времени 1 2,   

интеградифференцирующего корректирующего звена, получаем 

параметрические уравнения границы области устойчивости stP  математической 

модели (12.8) на плоскости 1 2( , )   .[4] 
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1 2 1 1 2 2 3

* * * *

1 1 2 2 3 1 2

*

1 4 5

* 3

2

1 1 2 2 3

1 1 2 2 3

( , , ) ( ) ( ) ( ),

( ) ( ), ( ) ( ), ( ) ( ),

( ) ( ),

( ) ( ( ))( 1)( 1)

Re ( ) Re ( ) Re ( )

Im ( ) Im ( ) Im ( )

L

u

D f f f

f f f f f f f

f k k

f T T

f i f i f i

f i f i f i



       

       

 

     

    

    

  

   

 

    

  

  

    (1.3.10)

1 2 1 1 2 2 3

1 2 1 1 2 2 3

1 2

1 2 2 1

1 2

3 2

1

3 2

Re ( , , ) Re ( ) Re ( ) Re ( ) 0,

Im ( , , ) Im ( ) Im ( ) Im ( ) 0,

Re ( )Re ( )
Re ( ) Im ( ) Re ( ) Im ( )

Im ( ) Im ( )

Re ( )Re ( )
R

Im ( ) Im ( )

D i f i f i f i

D i f i f i f i

f i f i
f i f i f i f i

f i f i

f i f i

f i f i

       

       

 
   

 

 

 

   

   

   

    2 3 3 2

1 3

2 3 1 1 3

1 3

1 2
1 2

e ( ) Im ( ) Re ( ) Im ( )

Re ( )Re ( )
Re ( ) Im ( ) Re ( ) Im ( )

Im ( ) Im ( )

,

f i f i f i f i

f i f i
f i f i f i f i

f i f i

   

 
   

 

 



    

 
 
 

   (1.3.11) 

Необходимо описать систему для уточненной математической модели 

поддерживающего слоя жидкости для учета перетекания жидкости между 

каналами. Координаты некоторой точки в неподвижной (инерциальной) и 

подвижной системах координат 
0 0 0

Ox y z и Oxyz . связаны следующим образом 

(проекции векторов связаны между собой аналогично). 

 Линии на сферической поверхности, определяющие проекции «боковых» 

границ рабочих каналов на поверхность внутренней сферы, соответствуют 

некоторым постоянным значениям полярных углов 
1
,

2
,

3
, а линии, 

определяющие проекции на сферическую поверхность тех поверхностей 

рабочих каналов, по которым в зазор между внешней сферой и собственно 

платформой может втекать либо вытекать рабочая жидкость, определяются 

постоянными значениями углов 
1
,

2
,

3
 (рис. 3).  
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Рисунок 3 – Поверхности для дополнительных граничных условий 

Поскольку геометрия области, соответствующей каналу в сферической 

поверхности, и области вне канала различна, на поверхностях над рабочими 

каналами. 

После упрощения и линерезации и преобразования Лапласа данной 

системы получаем передаточные функции с учетом изменений. 

 
( ) ( ) ( )

( ) ( ) ( ) (3,3)

( ) ( ) ( ) ;

, , : ;

u

u

M M M u M

M M M
  

Из симметрии системы получаем следующее представление для матриц 

передаточных функций: 

 

( )

( )

( )

( ) { ( ), ( ), ( )};

( ) { ( ), ( ), ( )};

( ) { ( ), ( ), ( )};

u
u u u

M diag M M M

M diag M M M

M diag M M M

                   (2.5.1)  

 

( ) ( ) ( ) ;

, , : ;

( ) ( ) ( )

( ( ) , ( ) , ( ) )

u w

u

u w

T
s x y z

M M M u M

M M M

M M u M

L sign sign sign

                              (2.5.2) 
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(1) (1) (1)

(1) (2) (2)2 2 2

(1) (1)

1 2 (2)2

;  ; ;

1

z z z

u

u

k k k

T T T
k k

u
T T

   (2.5.3) 

1

2
2

1
 = ;

1 1
u

u

k k
u
T T

                                                           (2.5.4) 

            (2.5.5) 

2 1

2

( ) sign( )
1

( ) ( ) ( ) ( ) sign( )
1 1 1

( ) sign( )

x

u s y

u
z

k k
M M M L

T T

  

Из (2.5.5) и (1.3.1) следует, что учет влияния перетеканий жидкости 

между рабочими каналами плавающей гиростабилизированной платформы на 

ее передаточные функции сводится к замене в формулах (1.3.7) функции ( ) 

на функцию ( )M , функции ( )
L

 на функцию ( )
u
M , и функции ( ) на 

функцию ( )M . С учетом поверхностей симметрии отражения и симметрии 

периодичности краевые задачи для нахождения функций ( )M , ( )
u
M , ( )M  

преобразуются к виду 

1
0; ( , ) ( , ); 2,3

sin

0;

r
j jctg j

p


     

  










     

   



   (2.5.6) 

(0)(0) (0) (0)
(0) (0)

2
(0) (0)

2

(0) (0) (0) (0)

(0) (0)

sin sin

1
2 {0,0, };

sin sin

r r

r

r r

p
ctg f

     
      

     


     

 

     
     

     

      
  


  

       

  

      
    

       


   

  

       
    

       
2

(0) (0) (0)

2

1 1
( ) {0,0, };

sin

( , ) ( , ); 2,3

r

j j

p
ctg f

j




     

 

 



    


     

   

   

(2.5.7) 

 2 2

3 3

2 2 2

3 3 3

sin ,  0;  cos sin , cos ; 

cos sin , sin  

f f f f

f f
  (2.5.8) 

2 2

3 2

1 1 1

2 2 2
1 1

3 3 3
11

0; 0; { sin ,0,0};

{ cos ,0,0}; {cos sin ,0,0};

{sin ,0,0}; {cos cos ,0,0}

r   

 



   

  

 

   

  

  

   

    

    

    (2.5.9) 
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внутр

1(*)

2 0 0
1 1 1 1 1 3 5 7

2 2 0 2 2 0 2 2 8 8 8 8
1 1 1 3 3 1

3 3 2 2 8 8 8 8

0

({( , ) [0, ] [0, ]} {( , ) [0, ] [0, ]}
{( , ) [0, ] [ , ]})\ ({( , ) [ , ] ([ , ] [ , ])}
{( , ) [ , ] ([ , ] [ , ])}
{( , ) [0, ] [

b

b b

S

1 1

0 2 2 0 2 0 2
, ]} {( , ) [ , ] [ , ]}),

1 1 2 1/2

0 2 2
arcsin( (1 2 sin ))

b
  

1 12 1/2

0 2 2
arcsin(sin (1 cos (1 2)) )

b b
)     (2.5.10)

2

3

1 1 3 5 7

2 8 8 8 8
1 1 3

2 2 22 8 8
1 1 3

3 3 32 8 8

0,  ( , ) :  0,  0,  {0, 0, sin },
,  ( , ) [ , 0] ([ , ] [ , ]) :  0,
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Программное описание математической модели гиростабилизированной 

платформы было реализовано на языке C++ в виде dll-библиотеки.  

Библиотека содержит классы:  

 FloatPlatf. Данный класс содержит программное моделирование 

плавающей платформы, основные параметры, описывающие систему, 

необходимые впомогательные функции, фунции вычисления 

характеристического и квази-многочленов, передаточные фунции и 

методы, позволяющие найти область устойчивости и произвести 

параметрический синтез по упрощенной модели (1.3.1)-(1.3.9). 

Реализация класса приведена в приложении А.  

 SuppLayer. Данный класс содержит методы для компьютерного 

моделирования поддерживающего слоя жидкости плавающей 

гиростабилизированной платформы на основе трехмерных упрощенных 

(«укороченных») уравнений несжимаемости и Навье-Стокса, основные 

параметры, необходимые впомогательные функции, необходимые 

операторы для работы с функциями, описывающие краевую задачу, 

разложенными в ряды Чебышева, для реализации метода Галеркина. 

Методы данного класса предназначены для численного моделирования  

влияния эффектов перетекания жидкости между рабочими каналами 

плавающей гиростабилизированной платформы на передаточные 

функции поддерживающего слоя, в частности, на его вещественные и 

мнимые частотные характеристики. Реализация класса приведена в 

приложении Б. 

 Chebev. Данный класс реализует операции и преобразования над рядами 

Чебышева. Класс является шаблонным с целью поддержания различных 

типов коэффициентов. Перегружены стандартные операции и 

конструкторы над рядами Чебышева такие как сложение, умножение, 

маштабирование, вычитание, разложение, дифференцирование, 

интегрирование. Реализация класса приведена в приложении В. 
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Первоначально параметрический синтез проводился по упрощенной 

математической модели (1.3.1)-(1.3.9) 

Параметрический синтез будет проводиться по трем параметрам 

гиростабилизированной платформы 1 2, , uk  . Перед тем, как запустить процесс 

параметрического синтеза, построим график переходных функций при 

начальных параметрах обратных связей, нажав на кнопку «Переходные 

функции». График можно увидеть на рисунке 4. 

 

Рисунок 4 – Переходные функции до параметрического синтеза. 

При реализации параметрического синтеза использовались алгоритмы, 

приведенные в пунктах 1.3. Для вычисления интеграла использовался 

численный метод Гаусса [18, 19], а для минимизации функции использовался 

метод Нелдера-Мида [20, 21]. Для того, чтобы запустить параметрический 

синтез требуется, задать нужные параметры в Excel-документе и нажать на 

кнопку «Параметрический синтез». В листе документа будут содержатся 

данные о проведенном параметрическом синтезе.  

Теперь можно увидеть, как изменился график переходных функций после 

параметрического синтеза с новыми параметрами обратных связей. График 

переходных функций приведен на рисунке 6. 
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Рисунок 5 – Переходные функции после параметрического синтеза. 

Как можно увидеть на рисунке 5, с помощью параметрического синтеза 

удалось подобрать такие параметры, что время затухания колебаний, после 

которого достигается установившееся значение угла ошибки, значительно 

уменьшилось, а характерное значение угла ошибки сменилось с 0,00008 радиан 

на 0,0000055, что в 15 раз меньше. И , как можно увидеть на графиках. Таким 

образом, параметрический синтез намного улучшил нужные параметры. 

Отметим, что при проектировании навигационных систем с плавающей 

стабилизированной платформой на установившееся значение угла ошибки 

накладывается достаточно жесткое ограничение: он не должен превосходить 2 

угловых секунд. В результате выполнения параметрического синтеза удается 

подобрать такие параметры, что достаточно быстро устанавливается значение 

угла ошибки, соответствующее 1,13 угловым секундам, что полностью 

удовлетворяет поставленным требованиям. 

Параметрический синтез был распараллелен по алгоритму из раздела 

(1.3). А именно, было распараллелено вычисление интеграла функции. 

Возможно применять параллельный подход к алгоритму минимизации 

функции, но в данном случае это не применимо, так как количество параметров 

обратных связей слишком мало для получения эффективных результатов.  

Рассмотрено две параллельные реализации с помощью технологии 

OpenMP и библиотеки параллельных шаблонов Microsoft PPL. Вычисления 

проводились с помощью процессора Intel Core i7 3610 QM x4 (2.3/3.1 ГГц). 

Время работы последовательной и параллельных версий приведено в таблице 1. 
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Таблица 1 – Время работы последовательной и параллельных версий. 

Serial, c OpenMP, c PPL, c 

75,95668 15,626 15,438 

76,12853 15,86 15,61 

76,11558 15,782 15,594 

76,129 15,719 15,626 

76,912 15,751 15,673 

 

Таким образом, из таблицы 1 можно увидеть, что время работы 

параллельных версий в 4,5 раза меньше, чем время работы последовательной 

версии. Т.е. развивается сверхлинейное ускорение, превосходящее число 

используемых физических процессоров (ядер). Параллельные версии OpenMP и 

PPL работают по времени примерно одинаково. 

В работе был реализован адаптивный алгоритм параметрического синтеза 

[23]. Реализация приведена в приложении Б. В отличии от параметрического 

синтеза в предыдущих разделах, подбиралось 5 параметров обратных связей 

1 2 0, , , ,uk t    . Результаты адаптивного параметрического синтеза приведены на 

рисунке 15. 

График переходных функций после адаптивного параметрического 

синтеза можно увидеть на рисунке 10. 

 

Рисунок 6 – График переходных функций после адаптивного параметрического 

синтеза 

Сравним время работы последовательной и параллельных реализаций 

алгоритма параметрического синтеза из раздела 1.3 и последовательной и 
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параллельных реализаций адаптивного алгоритма параметрического синтеза из 

раздела 1.5. Результаты можно увидеть в таблице 3. 

Таблица 3 – Сравнение времени работы двух алгоритмов. 

 Serial, с OpenMP, с PPL, с 

Алгоритм 

параметрического 

синтеза 

76,448 15,74 15,58 

Адаптивный 

алгоритм 

параметрического 

синтеза 

108,47 22,54544 22,40382 

  

 Как видно из таблицы 3, время работы последовательной версии 

обычного алгоритма в 1,4 раза меньше, чем время работы последовательной 

версии адаптивного алгоритма,  время работы параллельной версии OpenMP и 

PPL обычного алгоритма так же в 1,4 раза меньше, чем время работы 

параллельной версии адаптивного алгоритма. 

 Можно сказать, что адаптивный алгоритм показал результаты 

несколько лучше обычного, но по времени работает медленнее. 

Для оценки влияния перетекания жидкости между каналами на 

передаточные функции системы требуется многократно решать линейные 

краевые задачи (2.5.6). Для решения данной задачи используется численный 

метод Галеркина, который заключается в выборе базисный функций, которые 

удовлетворяют граничным условиям, разложении функций по базису и 

приближенное решение. Для разложения функций по базису используются 

полиномы Чебышева. Для удобства сравнения частотных характеристик, после 

численного решения модельных краевых задач для линеаризованных 

упрощенных уравнений Навье-Стокса соответсвующие результаты 

преобразовывались к размерным переменным и параметрам. 
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С помощью приложения анализатора были построены графики 

вещественных характеристик 3 передаточных функций системы с учетом 

перетекания жидкости между каналами и без учета перетекания. На рисунках 7-

12 приведены результаты графиков передаточных функций системы.  

 

Рисунок 7 – График передаточной функции Re    

 

 

Рисунок 8 – График передаточных функций Re M   
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Рисунок 9  – График передаточных функций Re   

 

Рисунок 10 – График передаточных функций ReM  

 

 

 
Рисунок 11 – График передаточных функций Re

L
M  
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Рисунок 12 – График передаточных функций Re L  и Re

L
M  

 

 

Приведенные результаты подтверждают тот факт, что влияние 

перетекания жидкости между рабочими каналами плавающей 

гиростабилизированной платформы на ее вещественные частотные 

характеристики в области умеренных и средних частот не превышает 10-15%. 

Параметрический синтез выполняется по вещественной частотной 

характеристике плавающей гиростабилизированной платформы. Как следует из 

(1.3.1), (1.3.7) и (2.5.5), особенности поведения вещественных частотных 

характеристик поддерживающего слоя в высокочастотной области 

компенсируются достаточно быстрым убыванием с ростом частоты 

вещественной частотной характеристики плавающей гиростабилизированной 

платформы. Следовательно, учет эффектов перетекания между рабочими 

каналами не окажет радикального влияния на результаты параметрического 

синтеза и не будет служить препятствием для создания плавающей 

гиростабилизированной платформы с максимальным значением угловой 

ошибки порядка не более 2 угловых секунд.  
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ЗАКЛЮЧЕНИЕ 

Проведенные исследования позволяют сделать следующие выводы: 

Параметрический синтез позволяет сократить величины характерной 

угловой ошибки плавающей гиростабилизированной платформы до величины, 

не превышающей 1,5 угловых секунд, что существенно для проектирования 

навигационных систем. 

Адаптивный алгоритм параметрического синтеза работает несколько 

медленнее исходного, но приводит к лучшим результатам. При этом оба 

варианта параметрического синтеза успешно распараллеливаются на 

симметричных мультипроцессорных системах с общей памятью. 

Моделирование эффектов перетекания жидкости между рабочими 

каналами плавающей гиростабилизированной платформы целесообразно 

выполнять на основе упрощенных («укороченных») трехмерных ураванений 

Навье-Стокса. 

Численное интегрирование линейных и нелинейных краевых задач для 

трехмерных упрощенных уравнений Навье-Стокса целесообразно проводить на 

основе проекционного метода Галеркина с использованием в качестве базисных 

функций произведений ортогональных полиномов Чебышева 1-го рода по 

соответствующим независимым пространственным переменным 

Влияние эффектов перетекания на вещественные частотные 

характеристики поддерживающего слоя оценивается величиной порядка от 10 

до 15%. Учет эффектов перетекания между рабочими каналами не окажет 

радикального влияния на результаты параметрического синтеза и не будет 

служить препятствием для создания плавающей гиростабилизированной 

платформы с максимальным значением угловой ошибки порядка не более 2 

угловых секунд.  
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