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ВВЕДЕНИЕ. 

    При построении математических моделей физических задач мы неизбежно 

сталкиваемся с тем, что исходные данные этих задач всегда заданы 

приближенно, поскольку получаются в результате измерений. Поэтому 

функции f, являющиеся исходными данными нуждаются в предварительной 

математической «обработке» и заданы с некоторой погрешностью‖𝑓𝛿 − 𝑓‖𝑋2
≤

𝛿. Существование и единственность решений таких задач вытекает из их 

физической сущности. Поэтому некорректность нужно понимать именно в 

смысле отсутствия непрерывной зависимости решения от исходных данных. К 

таким задачам сводится ряд важных задач математической физики, 

вычислительной математики, теории функций, теории интегральных 

уравнений, а также многие прикладные задачи: обратные задачи геофизики и 

астрономии, задачи спектроскопии и другие. 

Основателями в области  некорректно поставленных задач являются       А. Н. 

Тихонов,  М. М Лаврентьев,  В. К. Иванов и др..  Ими были разработаны так 

называемые методы регуляризации, которые  состоят из двух принципиальных 

моментов: построение семейства линейных операторов T , зависящих от 

параметра  , и обладающие определёнными свойствами; согласование 

параметра   с погрешностью  , )(  , которое обеспечивает сходимости 

приближённого решения к  точному. Одним из наиболее известных методов 

является метод Тихонова, но, в работах А. Б. Бакушинского, В. В. Васина, В. А. 

Морозова, метод Тихонова был развит и обобщён.  

Г. В. Хромовой, метод Тихонова, применяемый к интегральному уравнению 1 

рода, был перенесен для решения задачи восстановления непрерывной функции 

по заданному –приближению, поскольку задача восстановления функций 

представляет самостоятельный интерес.  
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В дипломной работе, используя функционал Тихонова, был разработан новый 

модифицированный метод, который позволил получить следующие результаты: 

- построить семейство интегральных операторов, с помощью которых 

получаются равномерные приближения к непрерывной функции, 

удовлетворяющей краевым условиям (при этом указанные приближения 

удовлетворяют тем же условиям); 

- решить задачу типа Колмогорова – Никольского на некотором классе 

функций; 

- с помощью полученного семейства интегральных операторов решить  

известную задачу из теории некорректно поставленных задач, так называемую 

задачу восстановления непрерывной функции по ее среднеквадратичному 

приближению. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ. 

      Исходя из поставленных задач, работа состоит фактически из трех частей.  

1. Сначала приводятся некоторые необходимые вводные данные (пункт 1.1) и 

дается  общая постановка задачи (пункт 1.2).  

Рассмотрим два банахова пространства  𝑋1 и 𝑋2.  

Пусть  

                                                                          ‖∙‖𝑋2
≤ 𝐶‖∙‖𝑋1

                                       

Пусть некоторый элемент 𝑓̅ ∈ 𝑋1 задан его 𝛿- приближением 𝑓𝛿 в метрике 

пространства 𝑋2, т.е. вместо  𝑓̅ нам известен элемент 𝑓𝛿 такой, что ‖𝑓𝛿 − 𝑓̅‖
𝑋2

≤

𝛿. Требуется по 𝑓𝛿  и 𝛿 построить такую последовательность 𝑓𝛿, чтобы 

                                               ‖𝑓𝛿 − 𝑓̅‖
𝑋1

→ 0 при 𝛿 → 0. 

Эта задача называется задачей восстановления элемента 𝑓 из пространства 𝑋1 

по его 𝛿- приближению 𝑓𝛿 в метрике пространства 𝑋2.  

Если 𝑋1 = 𝐶[𝑎, 𝑏], 𝑋2 = 𝐿2[𝑎, 𝑏], то получим задачу восстановления из 𝐿2 в 𝐶. 



4 

 

     В методе регуляризации Тихонова рассматривается функционал 

                                                𝑀𝛿
𝛼[𝑓, 𝑓𝛿] = ‖𝑓 − 𝑓𝛿‖𝐿2

2 + 𝛼‖𝑓‖
𝑊2

1
2 ,                       (1.1) 

где 𝑓 аргумент функционала, 𝛼 > 0, 𝑊2
1 пространство Соболева с нормой 

‖𝑓‖𝑊2
1 = √∫ (𝑓′2(𝑥) + 𝑓2(𝑥))𝑑𝑥

𝑏

𝑎

 

Ищется функция𝑓𝛿
𝛼(𝑥), дающая минимум функционала, т.е. 

𝑚𝑖𝑛𝑓𝑀𝛿
𝛼[𝑓, 𝑓𝛿] = 𝑀𝛿

𝛼[𝑓𝛿
𝛼, 𝑓𝛿] 

Из вариационного исчисления известно, что если функция доставляет 

экстремум функционалу, то она удовлетворяет некоторому уравнению Эйлера 

(линейная часть приращения функционала, взятого на экстремальной функции, 

равна нулю). А если удастся решить это уравнение Эйлера, то можно получить 

вид операторов 𝑇𝛼, обеспечивающих сходимость для любой непрерывной f(x). 

 

Рассмотрим  следующую задачу и получим уравнение Эйлера. 

Пусть непрерывная функция 𝑓(𝑥) удовлетворяет краевому условию 

                             U(f)=𝛽1𝑓𝛿(0) +  𝛽2𝑓𝛿(1) = 0, 𝛽1
2 + 𝛽2

2 > 0                        (1) 

Необходимо получить равномерные приближения к f, используя модификацию 

функционала Тихонова.  

А именно – рассмотреть функционал (), где α>0 – параметр,  

‖𝑓‖𝑊2
1 = √∫ (𝑝𝑓2 + (𝑞𝑓′)2)𝑑𝑥

1

0
, q, p – положительные константы. Это так 

называемый тихоновский функционал, но в данном случае он связывается не с 

интегральным уравнением 1 рода, как у Тихонова, а с простейшим уравнением 

1 рода – уравнением с оператором вложения из пространства 𝐶[𝑎, 𝑏] в  𝐿2[𝑎, 𝑏]. 

При этом будем считать допустимыми функциями функции, удовлетворяющие 

условию (1.9). 

  Обозначим через𝑓𝛿
𝛼(𝑥) – функции, минимизирующие функционал  при 

каждом фиксированном α (параметр 𝛿 потребуется в дальнейшем, здесь он не 
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влияет на функцию). Существование таких функций доказывается точно так 

же, как и в классической постановке Тихонова[2]. 

 

Теорема 1. Минимизирующие функции𝑓𝛿
𝛼(𝑥)при каждом фиксированном α 

являются решением краевой задачи 

                                                    {

−𝑦" + (1 +
1

𝛼
) 𝑦 =

1

𝛼
𝑓𝛿(𝑥)

𝛽1𝑦(0) + 𝛽2𝑦(1) = 0

𝛽2𝑦′(0) + 𝛽1𝑦′(1) = 0

                         (2) 

Доказательство. 

Даем приращение функции 𝑓𝛿
𝛼 в виде: 

∆𝑓𝛿
𝛼 = 𝑓𝛿

𝛼 + 𝛽𝛾, где 𝛾(𝑥)функция для которой существует ‖𝛾(𝑥)‖𝑊2
1. 

Составляем приращение функционала и приравниваем линейную часть к нулю. 

При ходим к некоторому уравнению Эйлера. Функция, на которой достигается 

минимум функционала Тихонова, имеет вид: 

                                            𝑓𝛿
𝛼(𝑥) =

1

𝛼
∫ 𝐺(𝑥, 𝑡, −𝛼1

2)𝑓𝛿(𝑡)𝑑𝑡

𝑏

𝑎

 

Теперь, если удастся решить это уравнение Эйлера, то можно получить вид 

операторов 𝑇𝛼, обеспечивающих сходимость. Решая задачу (2) с общими 

краевыми условиями (пункт 2)   получаем конкретный вид 𝑓𝛿
𝛼 .   Обозначим 

через 𝑇𝛼 оператор, который каждой непрерывной функции f(x), 

удовлетворяющей условиям (1), ставит в соответствие функцию, 

минимизирующую функционал, т. е  𝑓𝛿
𝛼(пункт 2) . 

 

Теорема 2.1При каждом фиксированном 𝛼 оператор  𝑇𝛼 имеет следующий 

интегральный вид                                             

                                                         𝑇𝛼𝑓 =
1

𝛼
∫ 𝐺 (𝑥, 𝑡, −

1

𝛼
)

1

0
𝑓(𝑡)𝑑𝑡,                            (3)      

где 𝐺 (𝑥, 𝑡, −
1

𝛼
) =

1

2𝛼1𝑞
[±𝑠ℎ𝛼1(𝑥 − 𝑡) +

𝐷(𝑥,𝑡,𝛽1,𝛽2,𝛼1)

𝐵(𝛽1,𝛽2,𝛼1)
]  - функция Грина.                                             
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Знак «+» соответствует случаю 𝑡 ≤ 𝑥, знак «-» соответствует случаю 𝑡 ≥ 𝑥. 

𝐵(𝛽1, 𝛽2, 𝛼1) = (𝛽1
2 + 𝛽2

2)𝑐ℎ𝛼1 + 2𝛽1𝛽2, 

𝐷(𝑥, 𝑡, 𝛽1, 𝛽2, 𝛼1) = (𝛽1
2 − 𝛽2

2)𝑐ℎ𝛼1𝑠ℎ𝛼1(𝑥 + 𝑡) +  (𝛽1
2 + 𝛽2

2)𝑠ℎ𝛼1𝑐ℎ𝛼1(𝑥 − 𝑡) − 

−(𝛽1
2 − 𝛽2

2)𝑐ℎ𝛼1(𝑥 + 𝑡)𝑠ℎ𝛼1,𝛼, 𝑝, 𝑞- параметры , 𝛽1, 𝛽2 − 𝑐𝑜𝑛𝑠𝑡из (1), 

𝛼1 = √
𝑝

𝑞
+

1

𝛼𝑞
 . 

Кроме общего вида этого оператора, показана сходимость семейства таких 

операторов  для любой непрерывной функции при  𝛼 → 0 (пункт 2) . 

 Теорема2. 

Для любой непрерывной функции f(x), удовлетворяющей(1.9), и семейства 

интегральных операторов𝑇𝛼имеет место сходимость  

‖𝑇𝛼𝑓 − 𝑓‖𝑐[0,1] → 0,    при  𝛼 → 0. 

2.Интегральный вид найденных операторов позволяет решить задачу о 

скорости сходимости полученных приближений на некотором классе функций 

(пункт 3). Введем в рассмотрение класс функций  

                            𝑀𝐵 = {𝑢 ∈ 𝐶[0,1]: 𝑈(𝑢) = 0, 𝑢 = 𝐵𝑣, ‖𝑣‖𝐿2
≤ 1} ,                     (4) 

где B – интегральный  оператор с ядром𝐵(𝑥, 𝑡), причем ядро 𝐵(𝑥, 𝑡) имеет вид: 

                                        𝐵(𝑥, 𝑡) = {
𝛽1, 0 ≤ 𝑡 ≤ 𝑥

−𝛽2, 𝑥 < 𝑡 ≤ 1
           ,                                      (5)             

и величину∆1(𝑇𝛼, 𝑀𝐵) = 𝑠𝑢𝑝 {‖𝑇𝛼𝑢 − 𝑢‖𝐶[0,1]
: 𝑢 ∈ 𝑀𝐵}. 

𝑇𝛼𝑢 –семейство интегральных операторов, имеющих вид (3). 

Для этого класса решаем задачу типа Колмогорова-Никольского. Эта задача 

нахождения точных по  порядку 𝛼 оценок верхних граней  отклонения функций 

от их приближений на некотором классе. 
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  Теорема 3.1  Для класса функций  𝑀𝐵, в котором ядро 𝐵(𝑥, 𝑡) имеет вид (5) 

справедлива двустороння оценка: 

   1

   2
𝐶∗𝛽2𝛼

1

4 −  𝜑1(𝛼) ≤ ∆1(𝑇𝛼 , 𝑀𝐵) ≤ 𝐶∗𝛽2𝛼
1

4 + 𝜑2(𝛼)                                        (6) 

где 𝜑1(𝛼) = 𝑂(𝛼),      𝜑2(𝛼) = 𝑂(𝛼), 

= {
𝑚𝑖𝑛(𝛽1,𝛽2),    𝛽1, 𝛽2 ≠ 0,

1,     𝛽1 =  0 или   𝛽2 = 0                    𝛽
≈ , =𝛽

~ 𝑚𝑎𝑥 (𝛽1, 𝛽2),𝐶∗ =
(𝛽1+𝛽2)

𝛽1
2+𝛽2

2 ∙ 𝑞
1

4. 

Доказательство теоремы. 

Для оценок величины ∆1используем формулу из [4].  Рассмотрим 

∆1(𝑇𝛼, 𝑀𝐵) =  (∫ [
1

𝛼
∫ 𝐾 (𝑥, 𝜏,

1

𝛼
) 𝐵(𝜏, 𝑡)𝑑𝜏 − 𝐵(𝑥, 𝑡)

1

0

]

2

𝑑𝑡
1

0

)

1

2

=0≤𝑥≤1
𝑆𝑈𝑃  

=  (∫ (𝐽∗)2𝑑𝑡
1

0

)

1

2

0≤𝑥1
𝑆𝑈𝑃  

Преобразовывая все слагаемые, получаем теорему. 

3. В пункте 4 решается задача восстановления непрерывной функции по ее      

среднеквадратичному 𝛿 – приближению. Рассмотрим случай, когда вместо 

точной функции 𝑓̅(x) известна функция 𝑓𝛿 , ‖𝑓𝛿 − 𝑓̅‖
𝑋2

≤ 𝛿.  Ставится задача 

получения по 𝑓𝛿 и 𝛿 равномерных приближений к  𝑓̅(x). Это известная задача из 

теории некорректно поставленных задач. Она называется задачей 

восстановления элемента 𝑓 по его 𝛿- приближению 𝑓𝛿  (см. пункт 1.2).  Ее опять 

же позволяет решить найденный вид интегрального оператора. Кроме того при 

получении результата потребуется оценка нормы этого оператора (пункт 4.1) и, 

найденные в теореме 3.1, оценки величины ∆1(𝑇𝛼, 𝑀𝐵).  

  Теорема 4.1Для нормы интегрального оператора 𝑇𝛼 имеет место равенство 
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‖𝑇𝛼‖𝐿2→𝐶 =
𝛽2𝛼−

1

4

√2(𝛽1
2 + 𝛽2

2)𝑞
1

4

+ 𝑂 (𝛼
3

4) 

асимптотическое по 𝛼, при 𝛼 → 0, где =𝛽
~ 𝑚𝑎𝑥 (𝛽1, 𝛽2). 

Теоремы 3.1 и 4.1 дают возможность решить задачу о получении точной по 

порядку оценки погрешности приближенных решений в задаче восстановления 

функций на классе 𝑀𝐵 и получить согласование 𝛼 = 𝛼(𝛿), обеспечивающее эту 

оценку (пункт 4.2). Рассматривается величина: 

∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) = 𝑠𝑢𝑝 {‖𝑇𝛼𝑓𝛿 − 𝑓‖𝐶[0,1]
: 𝑓 ∈ 𝑀𝐵, ‖𝑓𝛿 − 𝑓‖𝐿2

≤ 𝛿} 

  Теорема 5.1 Справедлива двусторонняя не улучшаемая по порядку  𝛿, при 

𝛿 → 0 оценка: 

𝐶2𝛿
1

2 − 𝑜 (𝛿
1

2) ≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) ≤ 𝐶1𝛿
1

2 − 𝑜 (𝛿
1

2), 

где 

𝛼(𝛿) =
𝛿2(𝛽1

2 + 𝛽2
2)

2𝑞(𝛽1 + 𝛽2)2, 

𝐶1 =
2

3

4𝛽2(𝛽1 + 𝛽2)
1

2

(𝛽1
2 + 𝛽2

2)
3

4

,        𝐶2 =
(𝛽2 + 2𝛽2) (𝛽1 + 𝛽2)

1

2

2
9

4(𝛽1
2 + 𝛽2

2)
3

4

. 

 

 

Этот метод получения оценок погрешностей был разработан Г.В. Хромовой на 

базе решения задачи Колмогорова –Никольского. 

Отправным моментом при доказательстве теоремы является известная оценка 

для величины ∆(𝛿, 𝑇𝛼, 𝑀𝐵), которая применительно к нашей задаче имеет вид: 
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 1

2
(∆1(𝑇𝛼, 𝑀𝐵) + ‖𝑇𝛼‖𝐿2→𝐶𝛿) ≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) ≤ ∆1(𝑇𝛼, 𝑀𝐵) + ‖𝑇𝛼‖𝐿2→𝐶𝛿 . 

  Используя Теорему 3.1 и Теорему 4.1 получаем: 

1

2
(

1

2
𝐶∗𝛽2𝛼

1

4 +
𝛽2𝛼−

1

4𝛿

√2(𝛽1
2 + 𝛽2

2)𝑞
1

4

− 𝜑2(𝛼)) ≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) ≤ 

≤ (𝐶∗𝛽2𝛼
1

4 +
𝛽̃2𝛼

−
1
4𝛿

√2(𝛽1
2+𝛽2

2)𝑞
1
4

+ 𝜑1(𝛼)) ,                (5.1) 

где 𝜑1(𝛼) = 𝑂(𝛼),      𝜑2(𝛼) = 𝑂(𝛼) 

  Обозначим через 

𝜗(𝛼) = 𝐶∗𝛽2𝛼
1

4 +
𝛽2𝛼−

1

4𝛿

√2(𝛽1
2 + 𝛽2

2)𝑞
1

4

 

  Исследуем функцию 𝜗(𝛼) на экстремум, т.е. находим производную по 𝛼, 

приравниваем ее к нулю и находим зависимость𝛼 = 𝛼(𝛿). 

𝜗′(𝛼) =
1

4
𝐶∗𝛽2𝛼−

3

4 −
𝛽2 𝛿

4√2(𝛽1
2 + 𝛽2

2)𝑞
1

4

𝛼−
5

4 = 0 

𝐶∗𝛽2𝛼−
3

4 =
𝛽̃2 𝛿

√2(𝛽1
2+𝛽2

2)𝑞
1
4

𝛼−
5

4, 

  Учитывая, что 𝐶∗ =
(𝛽1+𝛽2)

𝛽1
2+𝛽2

2 ∙ 𝑞
1

4, получаем 

𝛿𝛼−
1

2 =
√2(𝛽1

2+𝛽2
2)

1
2𝑞

1
2(𝛽1+𝛽2)

(𝛽1
2+𝛽2

2)
 , 

𝛼
1

2 =
𝛿(𝛽1

2+𝛽2
2)

1
2

√2𝑞
1
2(𝛽1+𝛽2)

 , 
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𝛼 = 𝛼(𝛿) =
𝛿2(𝛽1

2+𝛽2
2)

2𝑞(𝛽1+𝛽2)2
 . 

  Подставляем найденное согласование в (5.1): 

𝛽̃̃2(𝛽1+𝛽2)𝑞
1
4

4(𝛽1
2+𝛽2

2)
∙

𝛿
1
2(𝛽1

2+𝛽2
2)

1
4

2
1
4𝑞

1
4(𝛽1+𝛽2)

1
2

+
𝛽̃2𝛿

2√2𝑞
1
4(𝛽1+𝛽2)

1
2

∙
𝛿

−
1
2(𝛽1

2+𝛽2
2)

−
1
4

2
−

1
4𝑞

−
1
4(𝛽1+𝛽2)−

1
2

≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵)       (5.2) 

∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) ≤
𝛽̃̃2(𝛽1+𝛽2)𝑞

1
4

(𝛽1
2+𝛽2

2)
∙

𝛿
1
2(𝛽1

2+𝛽2
2)

1
4

2
1
4𝑞

1
4(𝛽1+𝛽2)

1
2

+
𝛽̃2𝛿

√2𝑞
1
4(𝛽1+𝛽2)

1
2

∙
𝛿

−
1
2(𝛽1

2+𝛽2
2)

−
1
4

2
−

1
4𝑞

−
1
4(𝛽1+𝛽2)−

1
2

         (5.3) 

Упрощаем (5.2): 

𝛽2(𝛽1 + 𝛽2)
1

2𝛿
1

2(𝛽1
2 + 𝛽2

2)
1

4 + 2𝛽2𝛿
1

2(𝛽1 + 𝛽2)
1

2(𝛽1
2 + 𝛽2

2)
1

4

2
9

4(𝛽1
2 + 𝛽2

2)
≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵), 

𝛿
1

2 (𝛽2 + 2𝛽2) (𝛽1 + 𝛽2)
1

2(𝛽1
2 + 𝛽2

2)
1

4

2
9

4(𝛽1
2 + 𝛽2

2)
≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵), 

𝛿
1

2 (𝛽2 + 2𝛽2) (𝛽1 + 𝛽2)
1

2

2
9

4(𝛽1
2 + 𝛽2

2)
3

4

≤ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵). 

Упрощаем (5.3): 

𝛽2(𝛽1 + 𝛽2)
1

2𝛿
1

2(𝛽1
2 + 𝛽2

2)
1

4 + 𝛽2𝛿
1

2(𝛽1 + 𝛽2)
1

2(𝛽1
2 + 𝛽2

2)
1

4

2
1

4(𝛽1
2 + 𝛽2

2)
≥ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵), 

2𝛽2𝛿
1

2(𝛽1 + 𝛽2)
1

2(𝛽1
2 + 𝛽2

2)
1

4

2
1

4(𝛽1
2 + 𝛽2

2)
≥ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵), 

2
3
4𝛽̃2𝛿

1
2(𝛽1+𝛽2)

1
2

(𝛽1
2+𝛽2

2)
3
4

≥ ∆(𝛿, 𝑇𝛼(𝛿), 𝑀𝐵) . 

Таким образом теорема доказана.  
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ЗАКЛЮЧЕНИЕ. 

В дипломной работе, используя функционал Тихонова, был разработан новый 

модифицированный метод, который позволил получить абсолютно новые 

результаты: построить семейство интегральных операторов; решить задачу 

типа Колмогорова – Никольского на некотором классе функций; решить  

известную задачу восстановления непрерывной функции по ее 

среднеквадратичному приближению. 

Этот метод получения оценок погрешностей был разработан Г.В. Хромовой на 

базе решения задачи Колмогорова –Никольского. Следует отметить, что 

первоначально поставленные задачи решались в частном случае при 𝛽2 = 0 и 

 𝑝 = 𝑞 = 1(см.[4]). Обобщение условий привело к появлению в ходе 

доказательств значительных трудностей как технического, так и теоретического 

характера. Была проведена проверка результатов общего случая на частный, 

которая подтвердила правильность выводов.    

 

 

 

  

 

 

 

 

 

 

 

 


