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ВВЕДЕНИЕ

Оценка различных опционов имеет прикладное значение при разработ-

ке стратегий на финансовых и фондовых рынках. На сегодняшний день для

оценки опционов создана сложная математическая теория, которой посвещано

множество книг и научных статей. Стоит отметить таких ученых, как Саму-

эльсон, Мертон, Шоулс, внесших основополагающий вклад в создание этой

математической теории. Данная теория является уникальным инструментом

для ресчетов цен опционов.

Среди объектов изучения теории вероятностей выделяются два класса

зависимых случайных велечин, образующих марковские цепи и мартингалы.

Параллельно в теории ортогональных рядов были изучены ряды по системам

Хаара и Уолша. Оказалось, что частичные суммы рядов интегрируемой функ-

ций по этим системам с номерами 2n совпадают и представляют собой мар-

тингал по отношению к σ-алгебрам, порожденным набором полуинтервалов

[(i− 1)/2n, i/2n)2
n

i=1. Для этих систем и их обобщений было хорошо известно

понятие квадратичной функции. Для системы Уолша она была введена Р.Пэли

в 1932 г., в пространствах Lp со степенным весом ее изучал И.Хиршмин

(1955). В этоже время изучались различные варианты понятия максимальной

функции, предложенной Г.Харди и Дж.Литтлвудом (1930). В частности дво-

ичная максимальная функция Mdf(x) определялась как максимум усреднений

модуля функции по In(x), где In(x) - прамежуток вида [(i−1)/2n, i/2n), содер-

жащий Х.Буркхольдер и Ганди (1970) установили эквивалентность описания

пространств. Lp(1 < p < ∞) мартингалов в терминах квадратичной функции

и максимальной функции, а Б.Девис в том же году рапспространил их ре-

зультаты на случай p = 1, где уже рассматривалось пространство Харди. Эти

результаты обобщались в разных направлениях: /beginenumerate /item на более

общие классы пространств, включая весовые; /item с использованием различ-

ных модификаций квадратичной и максимальной функций. /endenumerate

В разделе 1 данной работы аналог теорем Буркхольдера-Девиса-Ганди

доказывается для одного класса симметричных пространств, более широкого,

чем те для которых раньше были установленны эти результаты.

Другим важным результатом гармонического анализа стала эквивалент-

ность обычной максимальной функции и ее шари варианта. Аналог этих ре-

зультатов Ч.Феффермана-Стейна для мартингальных пространств был полу-
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чен в монографии А.Гарсии. В разделе 1 доказываются подобные результаты

для одного класса симметричных пространств.

В продолжении данной выпускной квалификационной работы рассмат-

ривается биномиальная модель (B, S)-рынка, а также разбираются понятия

верхних и нижний цен в классической модели с дискретным временем.

Биномиальный (B, S)-рынок является наиболее простой моделью рынка

с дискретным временем, который широко используется в стохастической фи-

нансовой математике для исследования различных финансовых инструментов.

Были поставлены следующие задачи:

— изучение теории (B, S)-рынка;

— разбор основных понятий в более общих моделях с дискретным време-

нем;

— написание программного кода для расчёта вспомогательной величины

нахождения цены опциона;

— расчет величин для конкретных опционов.

В разделе 2 данной работы приводятся основные понятия и факты тео-

рии (B, S)-рынка, а так же верхних и нижних цен в одношаговой модели. Рас-

суждения данного раздела основываются на работах А.Н.Ширяева, Л.Рушндорфа,

А.В.Мельникова, где подробно и понятно рассматривается теория (B, S)-рынка

и теория верхних и нижних цен опционов, в частности. Так же в этом разделе

описывается переход от биномиальной к непрерывной модели рынка.

В разделе 3 рассматривается случай более общей N -периодической мо-

дели. В качестве основного источника используется статья Л.Рушндорфа, в

которой автор рассматривает случай N -периодической модели и её сопостав-

ление с моделью Кокса-Росса-Рубинштейна.

В разделе 4 описывается алгоритм програмного кода на языке Python,

расчитывающего вспомогательную величину нахождения цены опциона по

формуле, рассмотренной во втором разделе работы. Данный програмный код

представлен в приложении А.

Результаты работы были представлены на студенческой научной конфе-

ренции механико-математического факультета, апрель 2018, Саратов, Саратов-

ский государственный университет. Принимала участие в XIX международ-

ной Саратовской зимней школе, 29 января - 2 февраля 2018, Саратов. Также

результаты работы были представлены и опубликованы в рамках V Между-
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народной молодежной научно-практической конференции «Математическое и

компьютерное моделирование в экономике, страховании и управлении риска-

ми», ноябрь 2016, Саратов, Саратовский государственный университет.
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1 Основное содержание работы

В теории мартингалов хорошо известны неравенства Буркхольдера-Ган-

ди-Дэвиса, согласно которым Lp-норма максимальной функции мартингала

слабо эквивалентна Lp-норме квадратичной вариации мартингала при

1 < p < ∞. Для перестановочно инвариантных банаховых функциональных

пространств (r.i. BFS, точное определение см. ниже) аналогичный результат

был получен У.Джонсоном и Г.Шехтманом.

Мартингальный аналог известной теоремы Ч.Феффермана-И.Стейна об

оценке Lp-нормы максимальной функции через Lp-норму шарп-функции был

установлен А.Гарсиа. Для пространств Орлича аналог теоремы Ч.Феффермана-

И.Стейна был получен Р.Лонгом, а для пространств Лоренца близкие резуль-

таты доказаны И.Реном.

Для так называемых перестановочно инвариантных квази-банаховых

функциональных пространств аналоги неравенств Буркхольдера-Ганди-Дэвиса

и Ч.Феффермана-И.Стейна были установлены К.Хо.

Так как понятие симметричного пространства не совпадает с поняти-

ем r.i. BFS, мы доказываем аналоги указанных выше результатов для одного

класса симметричных пространств, введенного В.А.Родиным при некоторых

ограничениях.

Пусть (Ω,Σ, P ) — полное вероятностное пространство, M(Ω) — мно-

жество измерисых на Ω относительно P функций. Для f : Ω → R функцией

распределения назовем Pf(λ) = P{x ∈ Ω : |f(x)| > λ}, невозрастающая пере-

становка функции f задается равенством f ∗(t) = inf{λ : Pf(λ) ≤ t}, t > 0.

Если X̃ = X̃(R+) — банахово пространство измеримых функций на

R+ = [0,+∞) (т.е. X̃ ⊂M(R+)), такое что

1) из неравенства |x(t)| ≤ |y(t)| на R+ и y ∈ X̃ следует, что x ∈ X̃ и

‖x‖X̃ ≤ ‖y‖X̃ ;

2) из равноизмеримости |x|, |y| и x ∈ X̃ следует, что y ∈ X̃ и ‖x‖X̃ =

= ‖y‖X̃ ,

то X̃ называется симметричным. Соответственно, банахово простран-

ство X ⊂ M(Ω) называется симметричным, если существует симметрич-

ное пространство X̃ на R+, такое что для любого f ∈ X верно равенство

‖f‖X = ‖f ∗‖X̃ .

Определим оператор растяжения равенством (στx)(t) = x(t/τ) для
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x ∈ X̃ . Известно, что στ непрерывно в симметричном пространстве X̃ и что

существуют величины

αX = lim
τ→0+0

ln ‖στ‖X̃→X̃
ln τ

= sup
0<τ<1

ln ‖στ‖X̃→X̃
ln τ

(1.1)

и

βX = lim
τ→+∞

ln ‖στ‖X̃→X̃
ln τ

= inf
1<τ<∞

ln ‖στ‖X̃→X̃
ln τ

, (1.2)

называемые нижним и верхним индексами Бойда пространства X .

Другой важной характеристикой симметричного пространства X явля-

ется фундаментальная функция ϕX(t) = ‖χ[0,t]‖X̃ , где χE — индикатор мно-

жества E. Можно ввести функцию mX(t) = sup0<s<∞ ϕX(st)/ϕ(s), t > 0, и

определить другие индексы

α∗X = sup
0<τ<1

lnmX(τ)

ln τ
, β∗X = inf

1<τ<∞

lnmX(τ)

ln τ
.

Известно, что 0 ≤ αX ≤ α∗X ≤ β∗X ≤ βX ≤ 1 и что для α∗X , β
∗
X верны аналоги

(1.1) и (1.2). В работе Т.Шимогаки приведен пример пространства X , такого

что α∗X = β∗X = 1/2, αX = 0, βX = 1.

Если симметричное пространство X обладает также свойством Фату

(т.е. условия xn ≥ 0, xn ↑ x п.в. на Ω и ‖xn‖X ≤ C <∞, n ∈ N, влекут x ∈ X
и ‖x‖X = limn→∞ ‖xn‖X), то оно называется перестановочно-инвариантным

банаховым функциональным пространством (r.i. BFS).

Следуя В.А.Родину, будем рассматривать симметричные пространства

X , удовлетворяющие неравенству

‖στ‖X̃→X̃ ≤ C sup
t>0

ϕX(tτ)

ϕX(t)
, τ > 0. (1.3)

Отметим, что пространства Lp, 1 ≤ p ≤ ∞, Орлича, Лоренца удовлетворяют

условию (1.3).

Важную роль играют слудующие утверждения.

Лемма 1. Пусть симметричное пространство X удовлетворяет условию

(1.3) и β∗X < 1. Тогда найдется γ ∈ (0, 1), такое что ‖σt‖X̃→X̃ = O(tγ),

t→∞.
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Лемма 2. Пусть симметричное пространство X удовлетворяет условию

(1.3) и α∗X > 0. Тогда при некотором γ > 0 верно соотношение ‖σt‖X̃→X̃ =

= O(tγ), t→ 0 + 0.

Теорема 3. Пусть 1 ≤ r < ∞, X — симмметричное пространство, удо-

влетворяющее условию (1.3) и такое, что α∗X > 0. Для любого равномерно

интегрируемого мартингала f = {fn}n≥0 справедливы неравенства

‖M(f)‖X ≤ C‖f ]‖X , ‖S(f)‖X ≤ C‖fSr ‖X , ‖s(f)‖X ≤ C‖f sr ‖X .

Теорема 4. ПустьX — симметричное пространство, удовлетворяющее усло-

вию (1.3) и такое что 0 < α∗X ≤ β∗X < 1. Существуют константы C2 > C1 >

0, такие что для любого равномерно интегрируемого мартингала f = {fn}n≥0
справедливо неравенство Буркхольдера-Дэвиса-Ганди

C1‖M(f)‖X ≤ ‖S(f)‖X ≤ C2‖M(f)‖X .

Далее рассмотрим модель биномиального рынка. Своё название данная

модель получила по причине того, что в ней рассматриваются два вида ценных

бумаг: облигации (безрисковый актив) и акции (рисковый актив).

Рассмотрим модель рынка с дискретным временем: на вероятностном

пространстве (Ω,F , P ) цена акции в n-й момент времени задана по формуле

Xn = X0

n∏
k=1

Yk, 1 ≤ n ≤ N,

где (Yk, Ak) стохастическая последовательность и Yk ограниченно 1 ≤ ak ≤
≤ Yk ≤ bk.

Положим Bn - облигации с постоянными процентами ri ≥ 0, ai ≤ 1+ri ≤
≤ bi

Bn = B0

n∏
k=1

(1 + rk).
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Определение 5. Стохастическая последовательность π = (β, γ) с β = (βn) и

γ = (γn); где βn и γn являются Fn−1 - измеримыми при всех n ≥ 0, называется

портфелем ценных бумаг инвестора на биномиальном рынке.

Определение 6. Капиталом портфеля ценных бумаг π называется стохасти-

ческая последовательность Xπ = (Xπ
n )n≥0 с Xπ

n = βnBn + γnXn.

Из рисковых и безрисковых активов формируются портфели ценных бу-

маг.

Определение 7. Портфель ценных бумаг π = (β, γ), где β = (βn) и γ = (γn),

n = 0, 1, ..., N , называется верхним (x, fN) —хеджем (нижним (x, fN) —хе-

джем), если Xπ
0 ≡ x, x > 0, Xπ

N > fN п.н. (соответственно, Xπ
N 6 fN п.н.).

Обозначим

H
∗ (x, fN , P ) = {π : X

π
0 = x, X

π
N > fN (P − п.н.)}

- класс верхних (x, fN) —хеджей

H∗ (x, fN , P ) = {π : Xπ
0 = x, Xπ

N 6 fN (P − п.н.)}

- нижних (x, fN) —хеджей.

fN — платёжное обязательство, тогда величины

C
∗ (fN , P ) = inf {x : ∃π, для которого X

π
0 = x и X

π
N > fN} , (1.4)

C∗ (fN , P ) = sup {x : ∃π, для которого X
π
0 = x и X

π
N 6 fN} , (1.5)

называются верхней и нижней ценой (хеджирование платежного обязатель-

ства fN).

Определение 8. Рынок называется безарбитражным, если для любогй стра-

тегии pi, такой что Xπ
0 = x и Xπ

N ≥ 0 п.н. следует, что Xπ
N = 0 п.н.

Теорема 9. (достаточное условие безарбитражности) Пусть существует

мера P̃ , эквивалентная исходной мере P и такая, что X̃N является мартин-

галом относительно (Ω, FN , P̃ ), тогда "ранок безарбитражный.
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Цены (1.4) и (1.5) порождены классом верхних H∗ (x, fN , P ) и нижних

H∗ (x, fN , P ) стратегий хеджирования соответственно. На безарбитражном

рынке цены имеют следующие представления

C
∗ (fN , P ) = sup

P̃∈P(P )
B0EP̃

fN
BN

, (1.6)

C∗ (fN , P ) = inf
P̃∈P(P )

B0EP̃

fN
BN

, (1.7)

где P (P ) — множество всех мартингальных мер P для дисконтированного

процесса (SN/BN) эквивалентных P , которое не пусто.

Для одношаговой модели N = 1,

B1 = B0 (1 + r) , X1 = X0 (1 + ρ) , (1.8)

где процентная ставка r(r ≥ 0) есть константа, процентная ставка ρ(ρ ≥ 0)

является случайной величиной.

Поскольку вся "случайность"в модель входит через значение ρ, то доста-

точно оперировать с распределением вероятностей = (dρ) на числовой прямой

R = ρ : |ρ| <∞ с борелевской системой B(P).

Будем предпологать, что носитель меры (dρ) сосредоточен на интервале

[a, b], где 0 6 a < b <∞. Если мера (dρ) сосредоточена в точках a и b, то (1.8)

является одношаговой моделью Кокса-Росса-Рубинштейна.

Тогда имеем

C
∗ (P ) = inf

(β,γ)∈H∗(P )
(β + γ X0) , (1.9)

C∗ (P ) = sup
(β,γ)∈H∗(P )

(β + γ X0) , (1.10)

где

H
∗ (P ) = {(β, γ) : β B1 +γ X1 > f (X1) (P − п.н.)} (1.11)

H∗ (P ) = {(β, γ) : β B1 +γ X1 6 f (X1) (P − п.н.)} (1.12)

Рассмотрим входящее в H∗(P ) ограничение

β(1 + r) + γX0(1 + ρ) ≥ f(X0(1 + ρ))(P − п.н.) (1.13)
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и введем класс P(P ) = P̃ = P̃ (dρ) распределений на [a, b], обладающих сле-

дующими свойствами:

1. P̃ ∼ P

(т.е. меры P̃ и P взаимно абсолютно непрерывны: P̃ � P, P � P̃ )

2. ∫ b

a

ρP̃ (dρ) = r (1.14)

Будем предпологать, что этот класс P(P ) 6= ∅.

Сделаем теперь следующее предложение относительно множества мар-

тингальных мер P(P ):

(A∗): существует подпоследовательность мер, скажем (P̃n)n≥1, из P(P ),

слабо сходящаяся к мере P ∗, сосредоточенной в двух точках a и b.

Теорема 10. Пусть функция платежного обязательства f(X0(1 + ρ)) явля-

ется выпуклой и непрерывной по ρ на [a, b], и выполнено условие слабой ком-

пактности (A∗). Тогда верхняя цена

C∗(P ) = sup
P̃∈P(P )

EP̃

f(X0(1 + ρ))

1 + r
. (1.15)

При этом sup достигается на мере P ∗ и

C∗(P ) =
r − a
b− a

fb
1 + r

+
b− r
b− a

fa
1 + r

, (1.16)

где fa,b = f(X0(1 + ρ)).

Предположим, что выполнено следующее условие.

(A∗): существует подпоследовательность мер {P̃n}n≥1 из P(P ), слабо

сходящаяся к мере P∗, сосредоточенной в одной точке fρ.

Для N-периодической модели верхняя граница возникает из модели

Кокса-Росса-Рубинштейна, а нижняя соответствует константе Yi = 1 + ri.

Такое утверждение базируется на сверх-хеджировании портфелей в слу-

чае, когда Y1, ..., YN -независимы, fN = f(XN), f -выпуклая, ak = 1+u, rk = r,

а d < r < u. В этом случае, при соответственном аппроксимирующем пред-
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положении, верхняя цена определяется следующим образом:

C∗(fN , P ) =
1

(1 + r)N

N∑
k=0

Ck
n

(
r − d
u− d

)N−k
×

×
(
u− r
u− d

)k
f
(
X0(1 + u)N−k(1 + d)k)

)
(1.17)

C∗(fN , P ) =
(f(X0(1 + r)N))

(1 + r)N
(1.18)

Рассмотрим технику увеличения риска распределения, основанную на

идее сохранения среднего. Вероятностная меря Q2 сохраняет среднее Q1 на

заданном интервале [a, b] если на этом интервале масса смещена к границам,

в то время как среднее сохраняется. В терминах случайных переменных Z

сохраняет среднее Y на интервале [a, b], если

1. PZ(B) = P Y (B) при B ∩ [a, b] = �;

2. P Y 1[a,b](Y ) �cx PZ1[a,b](Z);

где �cx - это выпуклое упорядочивание.

В теории вероятностей и математической статистике, стохастический

порядок определяет критерий, по которому можно судить, когда одна случай-

ная переменная больше другой. Для выпуклого упорядочивания A меньше,

чем B если и только если для любых выпуклых u,E[u(A)] ≤ E[u(B)].

Отношения 1 и 2 подразумевают, что

EZ1[a,b](Z) = EY 1[a,b](Y ).

Далее, для некоторой выпуклой функции f , такой что Ef(Z) существу-

ет, утверждается неравенство:

Ef(Y ) ≤ Ef(Z) (1.19)

отсюда, Y меньше чем Z в выпуклом упорядочивании, Y �cx Z.

Пусть (Xn, An) неотрицательная стохастическая последовательность

Xn =
∏n

i=1 Yi, где ai ≤ Yi ≤ bi, ai ≤ 1 ≤ bi, и f(x1, ..., xN) - выпуклая функция.

Значение выпуклой функции платёжного обязательства f(X1, ..., XN) можно
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соотносить со значением из модели Кокса-Росса-Рубинштейна.

Утверждение 11. (сравнительная лемма) Пусть Q ∈ P(P ) - произвольная

эквивалентная мартингальная мера для (Xn). Тогда

EQf(X1, ..., XN) ≤ EQf(X̃1, ..., X̃N),

где X̃n =
∏n

i=1 Ỹi, (Ỹi) - независимые с распределениями QỸi = Q
(Yi)

(
ai

bi

)
,

X̃1, ..., X̃N - это CRR- модель и

EQf(X̃1, ..., X̃N) =
N∑
k=0

∑
T⊂1,...,N

∏
l∈T

q∗l
∏
l /∈T

p∗l f
(
Xk,T
∗
)
, (1.20)

где Xk,T
∗ = (c1, ..., cN), cj =

∏j
i=1 di и di =

{
ai, i ∈ T
bi, i /∈ T

, p∗k = 1−ak
bk−akиq

∗
k = bk−1

bk−ak .

Утверждение 11 позволяет сравнивать мартингал X1, ..., XN с мартинга-

лом CRR-модели X̃1, ..., X̃N , который порождает верхнюю цену функции пла-

тёжного обязательства fN = f(X1, ..., XN), повышая риск.Рассмотрим следу-

ющую модель рынка с дискретным временем: на вероятностном пространстве

(Ω,A, P ) цена акции в n-й момент времени задана по формуле

XN = X0

n∏
k=1

Yk, 1 ≤ n ≤ N, (1.21)

где (Yk, Ak) стохастическая последовательность и Yk ограничено 0 ≤ ak ≤
≤ Yk ≤ bk.

Положим Bn - облигации с постоянными процентами ri ≥ 0,

ai ≤ 1 + ri ≤ bi

BN = B0

n∏
k=1

(1 + rk) (1.22)

Допустим следующие аппроксимирующие условия:

(A∗) Пусть существует последовательность (Qn) ⊂ P(P ), такая что
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QX1,...,Xn
n слабо сходится к мере CRR-модели Q∗ =

⊗N
i=1Q

∗
i , причём

Q∗k({bk}) = p∗k =
1 + rk − ak
bk − ak

,

Q∗k({ak}) = q∗k =
bk − 1− rk
bk − ak

.

Условие (A∗) выполняется для ∀ε > 0 и T ⊂ {1, ..., N},

P

(∏
k∈T

[ak, ak + ε]×
∏
k/∈T

[bk − ε, bk]

)
> 0.

(A∗) Пусть существует последовательность (Q̄n) ⊂ P(P ), такая что

Q̄X1,...,Xn
n слабо сходится к мере CRR-модели Q∗ =

⊗N
i=1(Qi)∗, где

(Qi)∗({1 + ri}) = 1,

это одноточечная мартингальная мера для
(
XN

BN

)
.

Теорема 12. (формула верхней и нижней цены) При условии (A∗) и (A∗), верх-

няя и нижняя цены для N -мерной модели с дискретным временем определя-

ются по формулам

C∗(fN , P ) = B0EQ∗
fN
BN

и

C∗(fN , P ) = B0EQ∗

fN
BN

.

Здесь Q∗ - CRR-мартингальная мера, в то время как Q∗ - мера определенная

в (A∗).

Как было показано в данной работе, формула 1.20 имеет важное значе-

ние, а именно позволяет найти величину EQf(X̃1, ..., X̃N) необходимую для

расчета цен опционов. Поэтому было принято решение написать програмный

код, расчитывающий эту величину.
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Напомним, что формула имеет вид

EQf(X̃1, ..., X̃N) =
N∑
k=0

∑
T⊂1,...,N

∏
l∈T

q∗l
∏
l /∈T

p∗l f
(
Xk,T
∗
)
,

где

Xk,T
∗ = (c1, ..., cN),

cj =

j∏
i=1

di,

di =

{
ai, i ∈ T
bi, i /∈ T

,

p∗k =
1− ak
bk − ak

и q∗k =
bk − 1

bk − ak
.

Для реализации было решено использовать язык программирования

Python.

Следуя принципам объктно-ориентированного программирования, дан-

ный програмный код разделен на классы для наглядности и лучшей расширя-

емости.

Главным классом и основной точкой входа является ласс Main.py. Для

получения результата необходимо запустить этот класс, при условии, что име-

ются все последующие. Здесь происходит взаимодействие программы с поль-

зователем, а именно:

1. Запрос и получение необходимых входных данных от пользователя;

2. Обработка полученных данных и вызов основного кода для расчета фор-

мулы;

3. Вывод результата работы программы.

Рассмотрим пункты подробнее.

1. С помощью команды вывода текста в консоль (print ("text")) програм-

ма выводит сообщение для пользователя с просьбой ввести необходимые дан-
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ные, а именно, N , ai и bi для ∀i = 1, ..., N , функцию платежного оябзательства

f . Причем в качестве функции необходимо ввести ее идентификатор, с помо-

щью которого будет определяться требуемая функция.

В свою очередь пользователь должен ввести все необходимые данные в

консоль.

2. Данные, полученые от пользователя из консоли передаются в метод

getFormula класса Formula для дальнейшего расчета необходимого значения.

3. После всех расетов программа выводит результат сообщением:

"EQf(X1, ..., XN) <= полученный результат".

Итак, из главного класса Main вызывается метод метод getFormula клас-

са Formula. Данный класс занимается непосредственным расчетом формулы,

а также является входной точкой для подпрограмм.

Непосредственно метод getFormula получает на вход данные N , ai и bi

для ∀i = 1, ..., N , идентификатор функции платежного оябзательства f , полу-

ченные в Main. Далее внутри рассчитывается внешняя сумма формулы.

Метод накапливает значение результата внутренней суммы в перемен-

ной result внутри цикла for. Стоит отметить, что изначально данная перемен-

ная пологается равной нулю для при инициализации для корректности расче-

тов. В конечном итоге метод возвращает resault = значению формулы.

Второй метод класса Formula, а именно innerSum расчитывает внутрен-

нюю сумму формулы.

В качестве входных данных метод принимает все теже параеметры N ,

ai и bi для ∀i = 1, ..., N , идентификатор функции платежного оябзательства f

и переменную-индикатор, которая по сути является номером шага итерации

внешней суммы.

Сумма накапливается с помощью цикла for, где количество итераций

равно количеству массивов T. Таким образом, считается сумма произведе-

ний PQ ( полученных с помощью метода intersectionPQ класса helperFormula)

и значений вункции f (полученных с помощью метода getFunction класса

Function) и записывается в переменную resault, которая также, как и в преды-

дущем методе, инициализируется как 0.

В качестве результата метод возвращает внутреннюю сумму для требу-

емого номера итерации внешней суммы - индикатор.

Значение функции для предыдущего метода рассчитывается в методе
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getFunction класса Function. Данный метод принимает в качестве входно-

го парамметра идентификатор пфункции f платежного обязательства в виде

строки и массив элементов cj, j = 1, ..., N . Метод обрабатывает полученный

идентификатор и преобразует ее в формулу.

Причем данный модуль является точкой расширения для внедрения дру-

гих функций. когда пользователь вводит идентификатор, соответствующий

определенной константе, программа выбирает необходимую функцию и под-

ставляет ее в формулу. На данный момент представленны еонстанты "evro"

(идентификатор функции европейского опциона) и "asia" (идентификатор функ-

ции азиатского опциона).

Далее, программа подставляет массив cj в полученную формулу и воз-

вращает значение функции в качестве результата.

Для нахождения всех массивов T (T ⊂ 1, ..., N) в методе innerSum класса

Formula используется метод getAllT класса Sochetania. Данный метод находит

все множества T содержащиеся в 1, ..., N , используя технику поиска сочета-

ний. Для поиска всех T , в классе также приссутствуют методы нахождения

факториала и сочетаний. В качестве результата метод getAllT возвращает дву-

мерный массив множеств T .

Последним классом, помогающим рассчитать значение метода innerSum

класса Formula является класс helperFormula. В данном классе приведены сле-

дующие вспомогательные методы:

1. getQk - метод, принимающий на вход начения ak и bk и расчитывающий

qk;

2. getPk - метод, принимающий на вход начения ak и bk и расчитывающий

pk;

3. getDi - метод, принимающий на вход начения ai, bi, i и множество T и

расчитывающий di;

4. getCj - метод, принимающий на вход начения ak, bk, j и множество T и

расчитывающий Cj;

5. getAllCj - метод, принимающий на вход начения ak, bk, N и множество

T и заполняющий массив cj в цикле, рассчитанных с помощью метода

getCj;

6. isContain - вспомогательный метод, показывающий, содержится ли эле-

мент one в массиве two. В качестве входных данных принимает число
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one и множество чисел two. В результате возвращает true, если элемент

содержится в массиве и false, если не содержится;

7. intersectionPQ - накапливает внутреннюю сумму.
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ЗАКЛЮЧЕНИЕ

Опцион - это некоторый контракт, в котором оговариваются покупатель

и продавец, а так же их права и обязательсятва. Покупатель имеет право ис-

полнить или не исполнить данный контракт. Продавец имеет определенные

в контракте финансовые обязательства перед покупателем. Например, купить

или продать в будущем актив по оговоренной цене.

Биномиальная модель оценивания опционов является широко распро-

страненным и с точки зрения математики достаточно простым численным

методом расчета цен опционов. Своё название данная модель получила по

причине того, что в ней рассматривается два вида ценных бумаг: акции и

облигации.

Дискретная модель рынка была разработана в статьях Кокса, Росса, Ру-

бинштейна, Харрисона, Крепса и Ширяева.

В данной работе были рассмотренны базовые понятия теории биноми-

ального рынка, верхней и нижней цены опционов в общих моделях с дис-

кретным временем. Были приведены основные понятия теории биномиально-

го рынка, понятия верхних и нижних цен опционов. Рассмотренны в случае

одношаговой модели (B, S)-рынка и способ расчета указанных цен. Так же

каснулись теории перехода от биномиальной к непрерывной модели рынка и

формулы Блека-Шоулса.

На основе одношаговой модели был рассмотрен случай более общей N -

периодической модели. Данная теория основывается на статье Рушендорфа,

в которой были обнаруженны неточности в формулировке одного из утвер-

ждений. Они были исправленны и приведено доказательство неточности из-

начальной формулировки, а именно контр-пример.

В последней части работы был описан алгоритм програмного кода (При-

ложения А) на языке Python для расчетов вспомогательной величины нахож-

дения цены опциона по формуле, рассмотренной в первом разделе работы.

Программа была написана на принципах объектно-ориентированного

программирования, что позволяет сделать ее расширяемой и использовать в

дальнейшем для любых функций, удовлетворяющих условиям из первого раз-

дела. Так же были приведены опционы: азиатский и европейский с функцией

платежного обязательства f(X1, ..., XN) = max(X1, ..., XN). Для указанных

примеров были показаны результаты работы программы.
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Таким образом, задачи выпускной квалификационной работы были до-

стигнуты. Результаты работы могут использоваться для дальнейшего изучения

теории верхних и нижних цен, а так же для их расчета.
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