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ВВЕДЕНИЕ

Актуальность темы. Применение нового метода приближенного ре-

шения задачи Коши для линейного дифференциального уравнения первого

порядка с использованием функций Хаара делает бакалаврскую работу несо-

мненно актуальной в теоретическом плане. С точки зрения практических при-

ложений представляет также интерес осуществленный в бакалаврской работе

численный анализ экономической модели Кейнса, описывающей динамику на-

ционального дохода на относительно небольшом промежутке времени.

Целью бакалаврской работы является построение алгоритма аппрок-

симации и оценка погрешности методом Хаара для численного решения задачи

Коши.

Методы исследования. В бакалаврской работе используются методы

математической экономики, вычислительной математики, дифференциальных

уравнений и теории функций.

Для достижения поставленных целей в работе необходимо решить сле-

дующие задачи:

1. Рассмотреть экономические модели Кейнса и Самуэльсона - Хикса;

2. Рассмотреть задачу Коши для линейного дифференциального уравнения

первого порядка;

3. Создать программный код для оценки погрешности аппроксимации;

Практическая значимость. Построить алгоритм приближенного реше-

ния задачи Коши для линейного дифференциального уравнения первого по-

рядка с использованием функции Хаара, дающий наилучшую погрешность

аппроксимации. Создать программный код для построенного алгоритма.

Структура и содержание бакалаврской работы. Работа состоит из

введения, семи разделов, заключения,списка использованных источников, со-

держащего 20 наименований , и приложений.Общий объем работы составляет

40 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы работы, формулируют-

ся цель работы и решаемые задачи.

Динамические модели
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В первом разделе ставится задача рассмотреть экономические модели

Кейнса и Самуэльсона - Хикса.

Кейнсианское учение представляет собой продолжение основополагаю-

щих методологических принципов неоклассического направления экономиче-

ской мысли, поскольку и сам Дж.М. Кейнс, и его последователи, следуя идее

«чистой экономической теории», исходят из приоритетного значения в хозяй-

ственной политике общества прежде всего экономических факторов, опре-

деляя выражающие их количественные показатели и связи между ними, как

правило, на базе методов предельного и функционального анализа, экономико-

математического моделирования. Но в то время как Маршалл рассматривал

предложение, спрос, цены преимущественно на уровне отдельных фирм, по-

требителей, т.е. на микроуровне, Кейнс пришел к выводу, что для начала следу-

ет выявить функциональные связи на уровне национального хозяйства. Кейнс

показал, что экономический рост зависит от структуры общественного про-

дукта, что все рынки необходимо изучать, как единую систему, за счет их

взаимосвязи.

Прежде чем искать наилучшее решение, надо было ответить на вопрос:

как решить проблему занятости, преодолеть депрессию? Изменились условия

равновесия. Требовался переход к анализу общего спроса, совокупного пред-

ложения, инвестиций, потоков доходов, потребления и накопления в масштабе

всего общества.

Дж.М. Кейнс также не отрицал влияния меркантилистов на созданную

им концепцию государственного регулирования экономических процессов.

Модель экономического цикла Самуэльсона-Хикса модель, включающая

в себя только рынок благ, на котором представлены два экономических субъек-

та: домохозяйства и фирмы. Допускается, что уровень цен и ставка процента

постоянны. Модели, основанные на взаимодействии акселератора и мульти-

пликатора, являются моделями кейнсианского толка и описывают процесс пе-

рехода экономики из одного равновесного состояния в другое при изменении

экзогенных параметров.

В этих моделях снимаются ограничение на мгновенное восстановление

равновесия в экономике и предположение об избыточности производственных

мощностей. Основным предметом анализа в моделях взаимодействия мульти-

пликатора и акселератора является переход из одного равновесного состояния
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в другое: будет ли процесс перехода в новое состояние монотонны или колеба-

тельным, сможет ли экономика восстановить равновесие, или будет постоянно

испытывать колебания около точки равновесия, или же экономическая система

будет безвозвратно нарушена.

Модель Самуэльсона–Хикса рассматривает только события, происходя-

щие на рынке благ, т.е. производство и потребление благ.

Во втором разделе ставится задача рассмотреть алгоритм аппроксима-

ции функции, ряд лемм и задачу Коши для численного решения дифференци-

ального уравнения.

Теорема 1

Для любого n = 1, 2, ... выполняется неравенство

‖ y′ − z′n ‖≤ e‖a‖(Ωn + Ce‖a‖Ω∗n. (1)

Неравенство (1) запишем в виде

‖ y′ − z′n ‖= O

(
ω

(
a,

1

2n

)
+ ω

(
b,

1

2n

)
+

1

2n

)
, n = 1, 2...

Такое же соотношение будет иметь место для нормы ‖ y′−y′n ‖ для достаточно

больших n. Постоянные в O -соотношениях зависят от величин ‖ a ‖, ‖ b ‖ и

| y | .
Следует заметить , что оценка для уклонения ‖ y− zn ‖ повторяет оцен-

ку (1) . Улучшения порядка сходимости, как это имеет место для интерпо-

ляционных сплайнов в нашем случае, вообще говоря, не происходит. Про-

стым примерном служит случай a(x) ≡ 0, когда теорема 1 дает нам оценку

‖ y′ − z′n ‖≤ ω(b, 1
2n ) и при этом оценка ‖ y − zn ‖≤ ω(b, 1

2n ) не улучшаема на

классе всех непрерывных функций b(x) ∈ C[0, 1]. В самом деле , при a(x) ≡ 0

имеем

y(x) = y0 +

∫ x

0

b(t)dt,

при zn,k = bn,k, откуда

y(1)− zn(1) =

∫ 1

0

b(x)dx− 2−2
2n−1∑
k=0

bn,k.
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Соотношение

sup
b(x)∈C[0,1]:b(xn,k=0,k=0,...,2n−1)

∫ 1

0 b(x)dx(
b, 1

2n

) ,

показывает неулучшаемость оценки

‖ y − zn ‖≤ ω

(
b,

1

2n

)
.

Свойства приближенного решения. Оценка погрешности

Введем следующие характеристики задачи (2)

C =| y0 |‖ a ‖ + ‖ b ‖, Ωn =| y0 | ω
(
a,

1

2n

)
+ ω

(
b,

1

2n

)
,

Ω∗n = ω

(
a,

1

2n

)
+
‖ a ‖

2n
,

где ω(f, δ) = sup|x1−x2|≤δ | f(x1)− f(x2) | – равномерный модуль непрерывно-

сти , а также характеристики входных интерполяционных и начальных данных:

An = max
0≤k≤2n−1

| an,k |, Bn = max
0≤k≤2n−1

| bn,k |, Cn =| y0 | An +Bn,

и приближенных решений

Yn = max
0≤k≤2n−1

| yn,k |, Zn = max
0≤k≤2n−1

| zn,k |, Mn= max
0≤k≤2n−1

| yn,k − zn,k | .

Построение алгоритма

Рассмотрим задачу Коши для линейного дифференциального уравнения

первого порядка : y′ + a(x)y = b(x), 0 ≤ x ≤ 1,

y(0) = y0.
(2)

Будем предполагать, что a(x), b(x) ∈ C[0, 1]– непрерывные функции.
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Будем искать приближенное значение yn(x) задачи (2), представляя его

производную в виде полинома по системе Хаара {Xn}∞n=0 порядка не выше 2n

y′n(x) =
2n−1∑
k=0

ŷn,kXk(x),

такой полином является ступенчатой функцией

y′n(x) = yn,k, k2−n < x < (k + 1)2−n, k = 0, ......, 2n − 1,

которая во внутренних точках разрыва равна полусумме своих односторонних

пределов, а в граничных точках 0 и 1 – своему пределу изнутри отрезка [0, 1],

т. е.

y′0 = yn,0y
′
n(k2−n) = (yn,k−1 + yn,k)/2,

при k = 1, . . . .., 2n − 1, y′n(1) = yn,2n−1 .

Сразу заметим, что переход от набора {yn,k}2
n−1
k=0 значений ступенчатой

функции к набору {ŷn,k}2
n−1
k=0 ее коэффициентов Фурье-Хаара ( и обратно) мо-

жет быть осуществлен с использованием быстрого преобразования Хаара.

Восстановим функцию yn(x) по ее производной

yn(x) = y0 + 2−n
k−1∑
j=0

yn,j + yn,k(x− k2−n), k2−n ≤ x ≤ (k + 1)2−n,

где k = 0, . . . .., 2n − 1 .

Функция yn(x) является кусочно-линейной с узлами в двоично-

рациональных точках k2−n.

Фиксируем набор промежуточных точек

xn,k = (k + θn,k)2
−n, 0 < θn,k < 1, k = 0, ...., 2n − 1.

Потребуем , чтобы функция yn(x) удовлетворяла дифференциальному

уравнению (2) на множестве точек {xn,k}2
n−1
k=0 . Получим систему уравнений

y′n(xn,k) + a(xn,k)yn(xn,k) = b(xn,k), k = 0, . . . .., 2n − 1.
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С учетом представления функций yn(x) и y′n(x) , обозначив для краткости

an,k = a(an,k) и bn,k = b(xn,k), будем иметь

yn,k + an,k

(
y0 + 2−n

k−1∑
j=0

yn,k + yn,kθn,k2
−n

)
= bn,k, k = 0, ....., 2n − 1. (3)

Из системы линейных алгебраических уравнений (3) величины {yn,k}2
n−1
k=0

определяются рекуррентно и однозначно, если только 1 + an,kθn,k2
−n 6= 0 для

всех k = 0, . . . .., 2n − 1 , что заведомо выполняется для достаточно больших

n, а именно при

2n ≥‖ a ‖= max
x∈[0,1]

| a(x) | .

Можно избежать произвола при выборе множества промежуточных точек

{xn,k}2
n−1
k=0 полагая, что θn,k = 1

2 .

В таком случае каждая точка xn,k будет серединой отрезка

[k2−n, (k + 1)2−n]

Далее мы покажем , что от выбора промежуточных точек принципиально

не зависят аппроксимативные свойства приближенного решения yn(x) задачи

(2). Для этого определим новые величины {zn,k}2
n−1
k=0 с помощью рекуррентных

соотношений:

zn,k + an,k

(
y0 + 2−n

k−1∑
j=0

zn,j

)
= bn,k, k = 0, ....., 2n − 1. (4)

Очевидно, что из уравнений (4) величины {zn,k}2
n−1
k=0 определяются ре-

куррентно и однозначно для любого натурального числа n. По построенным

величинам {zn,k}2
n−1
k=0 определим функции z′m(x) и zn(x) равенствами

z′n(x) = zn,k, k2−n < x < (k + 1)2−n, k =, ....., 2n − 1,

zn(x) = y0 + 2−n
k−1∑
j=0

zn,j + zn,k(x− 2−n), k2−n ≤ x ≤ (k + 1)2−n.

Функцию zn(x) нетрудно определить из рекуррентных соотношений (4)

7



по входным интерполяционным и начальным данным :

{an,k}2
n−1
k=0 , {bn,k}

2n−1
k=0 y0.

Леммы. Доказательства Лемм

Лемма 1

Справедливы неравенства:

Zn ≤ Cne
An ≤ Ce‖a‖, n = 1, 2....

Неравенства из сформулированной леммы дают оценку для приближен-

ных решений zn(x) и их производных.

Доказательство: Из рекуррентных соотношений (4) для всех

k = 0, ...., 2n − 1 получаем оценку

| Zn,k |≤| y0 || an,k | + | bn,k | + | an,k | 2−n
k−1∑
j=0

zn,j ≤ Cn + An2
−n

k−1∑
j=0

| zn,j | .

По лемме 3 отсюда следует неравенства приложения

Zn = Zn = max
0≤k≤2n−1

| zn,k |≤ Cne
An2

−n(2n−1)≤Cne
An≤Ce‖a‖.

Лемма 2

Имеет место оценка

Mn≤
2AnCne

3An

2n
≤ 2C ‖ a ‖ e3‖a‖

2n
.

Оценка леммы 2 показывает , что Mn= O(2−n) при достаточно больших

n. Следовательно , переход от приближенного решения yn(x)zn(x) оправдан , и

независимость аппроксимативных свойств приближенного решения от выбора

промежуточных точек {xn,k}2
n−1
k=0 обоснована. Из лемм 1 и 2 также вытекает

равномерная ограниченность функции yn(x) и их производных, поскольку

Yn ≤ Zn+ Mn≤ Ce‖a‖(1 +O(2−n)).

Обозначим через y(x) точное решение задачи (2).
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Доказательство: Сравним рекуррентные соотношения (3) и (4), причем

последние запишем в виде

zn,k + an,k

(
y0 + 2−n

k−1∑
j=0

zn,j + zn,kθn,k2
−n

)
= bn,k + an,kzn,kθn,k2

−n.

При k = 0, ....., 2n − 1 находим

| yn.k−zn.k |≤| an.k | 2−n
(
k−1∑
j=0

| yn.j − zn.j | + | yn.k − zn.k | θn.k+ | zn.k | θn.k

)
≤

≤ An2
−n

(
k−1∑
j=0

| yn.j − zn.j | + | yn.k − zn.k | +Zn

)
Поскольку 1− An2

−n ≥ 1− ‖ a ‖ 2−n ≥ 1
2 при n ≥ log2 ‖ a ‖ +1 , то

| yn.k − zn.k |≤ 2AnZn2
−n + 2An2

−n
k−1∑
j=0

| yn.j − zn.j | .

По лемме 3 отсюда следуют неравенства

Mn= max
0≤k≤2n−1

| yn,k − zn,k |≤
2AnZne

2An

2n
≤ 2AnZne

3An

2n
≤ 2C ‖ a ‖ e3‖a‖

2n
.

Учли оценку Zn ≤ CneA
n из леммы 1.

Лемма 3.

Если набор неотрицательных чисел {fk}Nk=0 удовлетворяет с некоторыми

постоянными α, β > 0 условию

fk ≤ α + β
k−1∑
j=0

fj, k = 0, ...., N,

то выполняется неравенство

fk ≤ αeβk, k = 0, ...., N.
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Доказательство: Из условия леммы следует оценка

fk ≤ α(1 + β)k, k = 0, ...., N,

которая легко проверяется по индукции

fk+1 ≤ α + β
k−1∑
j=0

fj ≤ α

(
1 + β

k∑
j=0

(1 + β)j

)
= α(1 + β)k+1.

Следовательно, имеем

fk ≤ α(1 + β)k ≤ αeβk.

Лемма 3 является дискретным вариантов леммы Гронуолла ( точнее , ее

простейшего частного случая).

Лемма Гронуолла.

Если неотрицательная непрерывная функция f(x), x0 ≤ x ≤ X удовле-

творяет с некоторыми постоянными α, β > 0

f(x) ≤ α + β

∫ x

x0

f(t)dt, x0 ≤ x ≤ X,

то выполняется неравенство

f(x) ≤ αeβ(x−x0), x0 ≤ x ≤ X.

Лемма 4.

Если неотрицательная функция f(x), x0 ≤ x ≤ X имеет лишь конечное

число точек разрыва первого рода {xk}Nk=1 ⊂ (x0, X) , в которых

f(xk) ≤ max{f(xk−0), f(xk+0)}, k = 1, ...., N и удовлетворяет с некоторыми

постоянными α, β > 0 условию

α + β

∫ x

x0

f(t)dt,

хотя бы во всех точках непрерывности( а тогда и вообще во всех точках отрезка

[x0, X]) , то при x0 ≤ x ≤ X выполняется неравенство

f(x) ≤ αeβ(x−x0). (5)
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Доказательство:

Пусть x0 < x1 < ... < xN < xN+1 = X . При x0 ≤ x ≤ x1 неравенство

(5) выполняется в силу классической леммы Гронуолла. Теперь предположим,

что (5) верно при x0 ≤ x < x1, ..., xk−1 < x < xk.

При xk < x < xx+1 по условию имеем:

f(x) ≤ α + β

∫ x

x0

f(t)dt = α + β

∫ xk

x0

f(t)dt+ β

∫ x

xk

f(t)dt,

откуда снова в силу классической леммы Гронуолла находим

f(x) ≤

(
α + β

∫ xk

x0

f(t)dt

)
eb(x−xk). (6)

Рассуждая более строго, следовало бы сначала вместо xk взять

xk+ε, ε > 0 , применить лемму Гронуолла, потом устремить ε→ 0 и получить

(6).

Далее подставим в интеграл из (6) оценку f(t) < αeβ(t−x0), t 6= x1, ..., xk,

которая верна по нашему предположению. Будем иметь

f(x) ≤

(
α + β

∫ xk

x0

αeβ(t−x0)dt

)
eβ(x−x0) = αeβ(x−x0).

Таким образом, неравенство (5) доказано по индукции для всех

x 6= x1, ..., xk. Тогда в точках разрыва первого рода f(xk ± 0) ≤ αeβ(x−x0) и,

следовательно,

f(x) ≤ max{f(xk − 0), f(xk + 0)} ≤ αeβ(x−x0), k = 1, ..., N.

(Точно так же проверяется утверждение из формулировки леммы, за-

ключенное в скобки).

Во втором разделе рассмотрена практическая часть, в которой реали-

зуется программа на языке C Sharp c использованием технологий объектно-

ориентированного программирования. Программа реализует заданный алго-

ритм аппроксимации функции по заданным точкам. На вход алгоритма пода-

ется набор из значений точек из области определения функции и функция,
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которую необходимо аппроксимировать. Далее на основе этих данных вычис-

ляются промежуточные и вспопогательные значения, которые в дальнейшем

используются в расчете конечных точек.

Результаты работы программы

В таблице 1 приведено точное решение , а также погрешность решения,

полученного методом Хаара для 8 произвольных точек.

Таблица 1 – Расчет погрешности аппроксимации методом Хаара

x Y(X) H(X) Y(X)-H(X)
0,0625 0,24740 0,24319 0,00421
0,1875 0,68164 0,67160 0,01004
0,3125 0,94898 0,93744 0,01154
0,4375 0,98399 0,97258 0,01141
0,5625 0,77807 0,76597 0,01211
0,6875 0,38166 0,36941 0,01225
0,8125 -0,10820 -0,11739 0,00920
0,9375 -0,57166 -0,57469 0,00313

Таким образом получено приближенное решение дифференциального

уравнения, где Y (X) является точным решением задачи Коши,H(X) - прибли-

женным значением по методу Хаара, а Y (X)−H(X) погрешностью решения,

которая составила

(RH) = 0, 01225 (7)

В заключении приведены результаты бакалаврской работы.

Основные результаты. В бакалаврской работе получены следующие

результаты:

1. Рассмотрены математические модели различных экономических про-

цессов, приводящих к дифференциальным уравенениям; особое место отведе-

но построению экономической модели Кейнса и ее обобщений;

2. Построен алгоритм приближенного решения задачи Коши для линей-

ного дифференциального уравнения первого порядка с использованием функ-

ций Хаара;

3. Осуществлена программная реализация построенного алгоритма.
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