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Требования Ростехнадзора предусматривают наличие на технологических 

объектах с блоками I и II категорий взрывоопасности компьютерных 

тренажеров, которые должны содержать максимально приближенные к 

реальным динамические модели процессов и реальные средства управления 

(функциональные клавиатуры, графические экранные формы). Все рабочие и 

инженерно-технические работники, непосредственно занятые ведением 

технологического процесса и эксплуатацией оборудования на этих объектах, 

проходят курс подготовки с использованием современных технических 

средств обучения и отработки таких навыков (компьютерные тренажеры, 

учебно-тренировочные полигоны) для приобретения практических навыков 

безопасного выполнения работ, предупреждения аварий и ликвидации их 

последствий. Обучение и отработка практических навыков на компьютерных 

тренажерах должны обеспечивать освоение технологического процесса и 

системы управления, пуска, плановой и аварийной остановки в типовых и 

специфических нештатных ситуациях и авариях. 

Создание модели трудоёмкий процесс, который включает в себя 

составление математического описания, выбор метода решения, 

программную реализацию модели, проверку адекватности модели реальному 

объекту. В данной работе предпринята попытка создать компьютерную 

модель реактора смешения на основе известных алгоритмов, применяемого в 

компьютерном тренажерном комплексе. 

Актуальность: 

Необходимость разработки компьютерных моделей реакторов различного 

типа, адекватно передающих различные - штатные, предаварийные и 

аварийные режимы работы. 
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Цель: 

Создание модели реактора смешения,  позволяющей использовать ее в 

составе учебно-тренажерного комплекса для подготовки оперативного 

персонала. 

В магистерской работе присутствует 2 главы: первая называется «Анализ 

существующих подходов при построении математических моделей 

реакторов», а вторая «Разработка компьютерной модели реактора окисления 

циклогексана». 

На данный момент все модели реакторов работают только при 

определённом стационарном режиме, и использование их для отработки 

пуска, останова и аварийных режимов совершенно неприемлемо. 

Применяемые в ряде систем компьютерные модели имеют только общие 

формулы расчета.Для реактора окисления циклогексана, разработка модели 

которого описана в работе, такие алгоритмы не сконфигурированы. 

Объектом данного исследования является реактор окисления циклогексана, 

который входит в состав установки получения циклогексанона, 

принципиальную схему которой можно видеть на рисунке 1. Сырьём служит 

циклогексан, который перед подачей в реактор нагревается в подогревателе 

до температуры 165 °С паром давлением 1,8 МПа. Высокотемпературный 

процесс окисления циклогексана кислородом воздуха осуществляется  в 

жидкой фазе в семь ступеней, при избыточном давлении не более 1,2 Мпа в 

присутствии инициатора - циклогексанона в исходном сырье. Окислитель - 

воздух - поступает в зону реакции в виде газа через барботажные устройства. 

Процесс окисления циклогексана представляет собой ряд сложных цепных, 

последовательных и параллельных реакций, в результате которых образуется 
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значительное число продуктов различной степени окисления циклогексана и 

степени деструкции его углеводородного скелета (гидроперекись 

циклогексила, циклогексанон, циклогексанол, монокарбоновые кислоты, 

простые и сложные эфиры, дикарбоновые кислоты, неиндентифицированные 

продукты,  "Х" масло), степень конверсии циклогексана при этом составляет 

порядка 3,5 %. 

 

Рисунок 1 - Принципиальная схема цеха окисления установки 

получения циклогексанона. I – сырьё; II – реакционные газы; III – дренаж; IV 

– продукты реакции; V – пар; VI – конденсат; Р-1/1 – Р1/5 - реакторы 

смешения; Т-2 – подогреватель воздуха; ТХ1/1 – ТХ1/5 – холодильники. 

В процессе окисления циклогексана можно выделить следующие 

уравнения химических реакций: 

1. Образование гидроперекиси циклогексила: 

С6Н12 + О2 = С6Н11ООН 

2. Образование циклогексанона: 
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С6Н12 + О2 = С6Н10О +Н2О 

3. Образование циклогексанола: 

С6Н12 + 0,5О2 = С6Н11ОН 

Образование дикарбоновых кислот: 

4. Адипиновой 

С6Н12 + 2,5О2 = (СН2)4(СООН)2+Н2О 

5. Глутаровой 

С6Н12 + 4О2 = (СН2)3(СООН)2 + 2Н2О + СО2 

6. Янтарной 

С6Н12 + 5,35О2 = (СН2)2(СООН)2 + 0,3СО +1,7СО2 +3Н2О 

7. Щавелевой 

С6Н12 +8,2О2 = НООС-СООН + 0,6СО + 3,4СО2 + 5Н2О 

Образование одноосновных кислот: 

8. Муравьиной 

С6Н12 + 6,5 О2 = 4НСООН + 2Н2О + СО + СО2 

При создании модели мы использовали следующие алгоритмы расчета. 

Перемешивание 

При выборе способа расчета перемешивания, мы остановились на 

«однопараметрической диффузионной модели». Объём реактора 

рассматривается, как состоящий из двух концентрических зон — 

центральной и периферийной, разделенных поверхностью радиусом 

rm(рисунок 2). Согласно такой модели, перемешивание является результатом 

совместного воздействия циркуляционного обмена между зонами и 

турбулентной диффузии в каждой из зон. Для численного решения 
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уравнений, их целесообразно преобразовать в конечноразностную форму, 

представив каждую из зон аппарата  как совокупность элементарных 

объемов, расположенных последовательно по высоте (H/z — шаг 

конечноразностной схемы; z — число элементарных объемов). При 

достаточно большом z, т. е. при малых H/z, концентрацию в каждом из 

элементарных объемов можно принять постоянной и зависящей только от 

времени, а градиент концентраций на границе между соседними 

элементарными объемами выразить в линейном приближении как отношение 

разности концентраций в них к величине H/z. 

 

Рисунок 2 - Схема модели выравнивания концентраций 

Рассчитываются осреднённые коэффициенты турбулентной диффузии 

D1 = a0
2ω0r0

2rm
2 (1.6ψ1rm

3 + 1.5ψ2rm
2 + 1),    (1) 

D2 = a0
2ω0r0

2 (R̅−rm)
2

R̅2−rm
2 (

1.6ψ1(rm
5 − 1) + 1.5(ψ2rm

4 − 1) +

(rm
2 − 1) + 2(ψ1 +ψ2 + 1)lnR̅

),  (2) 
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где a0-эмпирический коэффициент; ω0- угловая скорость мешалки, рад/мин; 

r0- радиус мешалки, м; R̅- отношение радиуса мешалки к радиусу аппарата, 

rm- радиус периферийной зоны, м; ψ1,ψ2 – параметры профиля скорости. 

Изменение концентрации в каждой зоне можно рассчитать, составив систему 

из 2z уравнений: 

{
 
 
 
 
 
 

 
 
 
 
 
 

dc1

dt
= (q(c2z − c1) + D1F1(c2 − c1) (

z

H
))

z

HF1
⋯

dci

dt
= (q(ci−1 − ci) + D1F1(ci−1 − 2ci+ci+1) (

z

H
))

z

HF1
⋯

dcz

dt
= (q(cz−1 − cz) + D1F1(cz−1 − cz) (

z

H
))

z

HF1

dcz+1

dt
= (q(cz − cz+1) + D2F2(cz+2 − cz+1) (

z

H
))

z

HF2
⋯

dck

dt
= (q(ck−1 − ck) + D2F2(ck−1 − 2ck+ck+1) (

z

H
))

z

HF2
⋯

dc2z

dt
= (q(c2z−1 − c2z) + D2F2(c2z−1 − c2z) (

z

H
))

z

HF2

,    (3) 

гдеF1 = πrm
2 – площадь поперечного сечения центральной зоны, м

2
; F2 =

π(R2 − rm
2 ) - площадь поперечного сечения периферийной зоны, м

2
; ci,сk- 

концентрации вещества в элементарном объёме, D1,D2 – осреднённые 

коэффициенты турбулентной диффузии в центральной и периферийной 

зонах, соответственно. 

Расчет кинетики химических реакций 

Кинетика химических реакций в модели считается, исходя из изменения 

концентрации данного компонента смеси в единицу времени по формуле: 

𝑑𝐶𝑖

𝑑𝑡
= 𝑘𝑗∏𝐶𝑖𝑗

𝑎𝑖𝑗𝑣𝑗 ,        (4) 
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где 
𝑑𝐶𝑖

𝑑𝑡
 – изменение концентрации i-го компонента за шаг, равный dt, 𝑘𝑗 – 

константа скорости j-й химической реакции, 𝐶𝑖𝑗 - произведение концентрации 

i-го компонента, участвующего в j-й химической реакции, моль/моль; 𝑣𝑗 – 

стехиометрический коэффициент, 𝑎𝑖𝑗 – частный порядок реакции по 

веществу 

Влияние температуры смеси на скорость химической реакции 

рассчитывается по уравнению Аррениуса. 

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇 ,        (5) 

где k– константа скорости химической реакции; A- предэкспоненциальный 

множитель; R -  универсальная газовая постоянная Дж/(моль∙К);  Ea – энергия 

активации, кДж/моль; T–температура, 
о
K. 

Давление жидкости 

По закону Паскаля: 

𝑝𝐿 = 𝜌𝑔ℎж + 𝑝𝑉,         (6) 

ρ - плотность жидкой смеси, кг/м
3
; hж – высота столба жидкости, м. 

Расчёт уровня 

Сначала нужно рассчитать высоту столба жидкости. 

ℎж =
𝑉ж

𝜋√𝑟
,         (7) 

где Vж – объём, занимаемый жидкостью,м
3
; r–радиус аппарата,м. 

Уровень в реакторе считается по формуле: 

𝐿 =
ℎж

ℎ
∙ 100,        (8) 
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где ℎж – высота столба жидкости, м; h–высота аппарата, м. 

Давление газа 

Рассчитывается по уравнению Ван-дер-Ваальса. 

𝑝𝑉 =
𝑅𝑇

𝑉𝑚−𝑏
−

𝑎

𝑉𝑚
2 ,         (9) 

где R- универсальная газовая постоянная, Дж/(моль∙К);T– температура, 
о
K, 

Vm–молярный объём, a - постоянная Ван-дер-Ваальса, характеризующая силы 

межмолекулярного притяжения, b - поправка, учитывающая собственный 

объем, занимаемый молекулами газа. 

Потери тепла в окружающую среду через стенку 

Рассчитывается по уравнению  

𝑑𝑄окр

𝑑𝑡
 =  𝑎 ∙ 𝑆 ∙ (𝑇окр − 𝑇ст),       (10) 

где 
𝑑𝑄окр

𝑑𝑡
 – количество тепла, уходящее/приходящее, из/в реактора за шаг, 

равный dt, 𝑎 = 𝐶𝑝 ∙ (8.4 + 0.06 ∙ (𝑇окр − 𝑇ст)) - коэффициент излучения, где 

Ср – теплоёмкость материала стенки, Дж/К; S – площадь поверхности стенки 

реактора, м
2
. 

Испарение — конденсация 

Рассчитываем работу для фазового перехода одной молекулы: 

𝑊 =
∆H𝑖𝑀

𝑁𝑎
,         (11) 

где ∆Hфп =Hiv- Hil, где HiV–энтальпия i-го компонента смеси в газовой фазе, 

Дж; HiL–энтальпия i-го компонента смеси в жидкой фазе, Дж; M–молярная 

масса, кг/моль;  Na– число Авогадро. 
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Средняя скорость молекулы 

𝑣𝑚 = √
3𝑘𝑏𝑇

𝑚
,        (12) 

где 𝑘𝑏-константа Больцмана; 𝑇 – температура, 
о
К; 𝑚 =

𝑀

𝑁𝑎
 – масса одной 

молекулы. 

Вероятность перехода молекулы из жидкости в пар 

𝑃 =
0.5

√𝜋
∙ exp (

(−1.5𝑊)

𝑘𝑏𝑇
),       (13) 

где r – радиус реактора. 

Давление насыщенного пара рассчитывается по уравнению Антуана 

𝑝нп = exp(𝐴 −
𝐵

𝑇+𝐶
),         (14) 

где A,B,C – коэффициенты в уравнении Антуана. 

Количество испаряющегося/конденсирующегося вещества: 

𝑑𝑓 = 𝑆ж𝜌𝑃𝑣𝑚
𝑝

𝑝нп
,        (15) 

где ρ – плотность жидкости/газа, кг/м
3
; p – давление жидкости/газа, Па; 

Sж-  площадь поверхности испарения/конденсации, м
2
. 

Выделение/ поглощение теплоты, вследствие фазового перехода: 

dQфп = ∆Hфп * df.          (16) 

Температура смеси в реакторе 

Приходящая/уходящая с входными/ выходными потоками теплота 

𝑑𝑄 =  𝐶𝑝𝐹(𝑇п − 𝑇см)𝑑𝑡,       (17) 
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где 𝐶𝑝 – теплоёмкость потока, Дж/К; F – расход потока, кг/ч; 𝑇п- температура 

потока,
о
К;𝑇см – температура смеси в реакторе,

о
К. 

Тепловой эффект реакции. Закон Гесса 

∆𝐻0р = ∑(𝑣исх∆𝐻исх
0 ) − ∑(𝑣пр∆𝐻пр

0 ),     (18) 

где ∆𝐻0р тепловой эффект реакции в стандартных условиях,𝑣исх, 𝑣пр-

стехиометрические коэффициенты исходных веществ и продуктов реакции, 

∆𝐻исх
0 , ∆𝐻пр

0  – стандартные энтальпии сгорания исходных веществ и 

продуктов реакции. 

Изменение теплоты, вследствие химической реакции: 

𝑑𝑄р = ∆𝐻
0
р𝑟𝑉𝐿 ,         (19) 

r – скорость химической реакции;𝑉𝐿- объём жидкой фазы, м
3
. 

Уравнение теплового баланса 

dQ∑ = dQ +𝑑𝑄р+ dQокр + dQфп.      (20) 

Заключение.Для проверки адекватности работы модели, было проведено 

сравнение различных режимов работы компьютерного тренажерного 

комплекса, основанного на разработанной модели, и установки окисления 

циклогексана в статическом и динамическом режимах. Расхождение значений 

материального баланса установки получения циклогексанона, рассчитанного 

с помощью разработанной нами модели, и регламентного, полученного из 

анализа режимных листов работающей установкисоставляет не более 0,5%, 

что говорит о высокой точности моделирования.  
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Более сложной задачей является отладка модели в режиме пуска установки. 

Нами  проводилась имитация пуска установки на тренажерном комплексе. На 

рисунке 3 показано изменение основных параметров установки при 

проведении регламентного пуска.  

Рисунок 3 - Изменение основных параметров реактора во время пуска 

На рисунке 4 видно изменение давления во время регулирования с помощью 

штатных систем АСУТП. Время переходных процессов соответствует 

реальности. 
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Рисунок 4 - Изменение давление во время регулирования 

Анализ приведённых кривых показывает качественное соответствие 

изменению всех параметров процесса таковому на реальной установке. 

Отклонение в значении показателей могут составлять несколько процентов, 

однако такое отклонение может быть вызвано различными условиями 

окружающей среды, и не влияет на процесс обучения персонала. 

Выводы: 

1. Разработана компьютерная модель реактора окисления циклогексана, 

пригодная для работы в составе учебно-тренажерного комплекса (УТК) 

по обучению оперативного персонала реальной установки действиям в 

различных – штатных и нештатных ситуациях. 

2. Отклонение технологических параметров установки, рассчитанных с 

помощью УТК в регламентном режиме составляет не более 0,5% от 

реальны. В режиме пуска и остановки УТК также адекватно 

отрабатывает изменение технологического процесса. 

 


