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Введение 

Последние десятилетия развития физики твердого тела 

характеризуются тем, что основными объектами исследования становятся 

тонкие пленки, многослойные тонкопленочные системы, проводящие нити и 

кристаллы малого размера. В таких системах существенно меняется 

большинство электронных свойств – возникает большое число новых, так 

называемых квантово-размерных эффектов. Наиболее кардинальным 

изменением свойств по сравнению с объемными материалами отличаются 

квантово-размерные структуры, в которых свободные носители заряда 

ограничены в своем движении в одном, двух или во всех трех координатных 

направлениях в области с размерами порядка длины волны де Бройля 

носителя. Одним из проявлений законов квантовой механики в квантово-

размерных структурах  является туннелирование частиц через 

потенциальные барьеры различной формы.  

Точные аналитические решения уравнения Шредингера для описания 

туннельного переноса могут быть получены лишь для ограниченного 

количества типов потенциальных барьеров. Некоторые такие задачи 

решаются с использованием упрощенных математических моделей,  не 

отражающих всю полноту проблемы, или с использованием медленно 

сходящихся рядов теории возмущений. Развитие численных методов и 

применение ЭВМ дает возможность решать значительно больший класс 

задач, не поддающихся решению аналитическими методами. Использование 

численных методов позволяет проводить численные эксперименты для 

математического моделирования туннелирования для различных видов 

потенциальных барьеров. В связи с этим актуально развитие эффективных 

алгоритмов, реализующих численное моделирование туннельного 

транспорта через потенциальный барьер произвольной формы. 

В связи с этим целью данной работы является выбор, обоснование, 

разработка, оптимизация и тестирование алгоритма численного 
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моделирования туннелирования электрона через потенциальный барьер 

заданной формы.  

Структура магистерской работы состоит из введения, трех глав, 

заключения и библиографического описания (21 источник). 

Положение, выносимое на защиту 

Разработан вариант алгоритма численного анализа математической 

модели туннелирования электрона через потенциальный барьер заданной 

формы, включающий физически корректную методику расчета 

коэффициента туннелирования электрона через потенциальный барьер; 

результаты, полученные в ходе тестирования алгоритма, хорошо качественно 

и количественно согласуются с базовыми физическими представлениями, а 

также данными известных теоретических работ. 

Общая характеристика работы 

Во введении обосновывается актуальность данной темы, 

формулируется цель работы. 

В первой главе проводится обзор научной литературы по данной 

тематике. Рассматривается модель туннелирования электрона через 

потенциальный барьер, в основе которой лежит стационарное одномерное 

уравнение Шредингера  

d
2
ψ(x)

dx2
+

2m(E-U)

ћ
2

ψ(x) = 0. 

Формулируются граничные условия и определение коэффициента 

туннелирования для потенциального барьера прямоугольной [1], ступенчатой 

формы и формы с треугольным срезом вершины [2].  

Также говорится о применении туннельного эффекта в различных 

инструментах для микрострук турного исследования свойств материалов 

(сканирующий туннельный микроскоп). Туннельный эффект лежит в основе 

действия ряда полупроводниковых приборов – туннельных диодов и 

туннельных транзисторов. Существенную роль эффекты туннелирования 

играют в перспективных устройствах наноэлектроники [3,4]: лазеры с 



4 
 

квантовыми ямами и точками, фотоприемники на квантовых ямах, лавинные 

фотодиоды, резонансно-туннельные транзисторы на квантовой точке, 

одноэлектронные транзисторы и другие.  

Рассматриваются методы численного анализа математической модели 

уравнения Шредингера. Описывается суть методов фазовых функций [5], 

передаточных матриц [6], конечных разностей [7], «стрельбы» [8]. 

Во второй главе формулируются уравнения модели и описывается 

алгоритм численного решения уравнения Шредингера для потенциальных 

барьеров заданных форм. 

Формулировка уравнения модели  

Задача решается в стационарном одномерном случае. На рисунке 9 

приведена выбранная система координат для потенциального барьера 

прямоугольной формы. Начало координат выбирается на правой границе 

потенциального барьера, что обеспечивает удобство задания граничных 

условий и интерпретации численного решения. 

 

Рисунок 1 - Система координат для барьера прямоугольной формы. 

Будем рассматривать потенциальный барьер прямоугольной формы 

высотой U и шириной d для одномерного движения частицы. Частица с 

некоторой энергией  Е движется вдоль оси x и падает слева на 

потенциальный барьер, частично отражаясь в противоположную сторону и 

частично проникая в область барьера. При проведении численных 

экспериментов величина эффективной массы m в каждой из областей 

считается одинаковой и принимается равной m = 9,1∙10-31 кг (является массой 
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свободного электрона). Энергия электрона E для потенциального барьера 

прямоугольной формы берется меньшей, чем высота барьера. Для 

нахождения коэффициента туннелирования D через потенциальный барьер 

необходимо найти решение уравнения Шредингера в каждой из 

рассматриваемых областей. 

 В выбранной системе координат (рисунок 1) уравнение Шредингера 

запишем в следующем виде: 

d
2
ψ(x)

dx2
+

2m(E-U(x))

ћ
2

ψ(x) = 0 ,                                      (1) 

где высота потенциального барьера 𝑈(𝑥) = {
0,           𝑥 < −𝑑
𝑈,   − 𝑑 ≤ 𝑥 ≤ 0  .
0,           𝑥 > 0

              (2) 

Для решения данного обыкновенного дифференциального уравнения 

второго порядка необходимо задать соответствующие дополнительные 

условия (начальные или граничные). Известно, что на границах барьера 

должны выполняться так называемые «условия сшивания», отражающие 

непрерывность волновой функции и ее первой производной по координате: 

{

𝜓𝐼(−𝑑) = 𝜓𝐼𝐼(−𝑑),

       (
𝑑𝜓𝐼
𝑑𝑥

)
𝑥=−𝑑

= (
𝑑𝜓𝐼𝐼
𝑑𝑥

)
𝑥=−𝑑

 ,
 

{

        𝜓𝐼𝐼(0) = 𝜓𝐼𝐼𝐼(0)            ,

  (
𝑑𝜓𝐼𝐼
𝑑𝑥

)
𝑥=0

= (
𝑑𝜓𝐼𝐼𝐼
𝑑𝑥

)
𝑥=0

 .
 

(3) 

В данном алгоритме численного решения предлагается для  

потенциального барьера использовать следующие начальные условия для 

волновой функции на правой границе барьера:        

{
ψ(0) = 𝜓𝐼𝐼𝐼0+  ,

 
𝜓̃(0) = 0.

 (4) 

Выполнение данных условий означает, что фаза прошедшей волны на 

правой границе барьера соответствует амплитудному значению 𝜓𝐼𝐼𝐼0+ 
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волновой функции в III области.  Отраженная волна в III области 

отсутствует. 

Барьер прямоугольной формы является слишком грубой идеализацией 

для количественных оценок физических величин в структурах с реальными 

барьерами. Так в работе [2] исследователями ставится задача об изучении 

процесса туннелирования электронов через потенциальные барьеры 

различных форм, которые составляют основную структуру элементов флеш-

памяти. Обычно это барьеры с различной формой среза вершины – 

ступенчатого или треугольного вида. 

В связи с этим особый интерес представляет математическое 

моделирование туннелирования электрона через потенциальный барьер со 

ступенчатой формой и формой с треугольным срезом вершины. 

Рассмотрим потенциальный барьер ступенчатой формы варианта I и 

варианта II, представленный на рисунке 2. Для данных барьеров, область II 

разделяется координатой x = - d1 на две части шириной 𝑑1 и 𝑑2 

соответственно. Таким образом, во второй области имеем две 

самостоятельные волновые функции 𝜓𝐼𝐼1(𝑥) и 𝜓𝐼𝐼2(𝑥). Ширина «ступеней» 

барьера выбирается 𝑑1=𝑑2, а энергия электрона 𝐸 < 𝑈1и 𝐸 < 𝑈2. 

  

а        б 

Рисунок 2 - Система координат для потенциального барьера 

ступенчатой формы (вариант I (а)  и вариант II (б)). 

Для представленных систем координат (рисунок 2) уравнение 

Шредингера записывается  в виде (1) с начальными условиями (4), где для 

потенциального барьера ступенчатой формы потенциальная энергия барьера 

имеет вид:  
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𝑈(𝑥) = {

0,           𝑥 < −𝑑
𝑈1 ,   − 𝑑 ≤ 𝑥 ≤ −𝑑1 
𝑈2 ,   − 𝑑1 ≤ 𝑥 ≤ 0
0,           𝑥 > 0

 , (5) 

где 𝑈1 > 𝑈2 для барьера варианта I, 𝑈1 < 𝑈2 для барьера варианта II. 

Для представленных случаев «условия сшивания» (3) перепишутся 

следующим образом: 

{

𝜓𝐼(−𝑑) = 𝜓𝐼𝐼1(−𝑑)

       (
𝑑𝜓𝐼
𝑑𝑥

)
𝑥=−𝑑

= (
𝑑𝜓𝐼𝐼1
𝑑𝑥

)
𝑥=−𝑑

, 

{

𝜓𝐼𝐼1(−𝑑1) = 𝜓𝐼𝐼2(−𝑑1)

       (
𝑑𝜓𝐼𝐼1
𝑑𝑥

)
𝑥=−𝑑1

= (
𝑑𝜓𝐼𝐼2
𝑑𝑥

)
𝑥=−𝑑1

,
 

{

𝜓𝐼𝐼2(0) = 𝜓𝐼𝐼𝐼(0)

       (
𝑑𝜓𝐼𝐼2
𝑑𝑥

)
𝑥=0

= (
𝑑𝜓𝐼𝐼𝐼
𝑑𝑥

)
𝑥=0

. 

(6) 

Рассмотрим следующую форму потенциального барьера.  На рисунке 3 

представлены системы координат для потенциального барьера с треугольным 

срезом вершины для варианта I и варианта II. Для численных расчетов 

энергия электрона принималась 𝐸 < 𝑈1и 𝐸 < 𝑈2. 

  

а        б 

Рисунок 3 - Система координат для потенциального барьера с 

треугольным срезом вершины (вариант I (а) и вариант II (б)). 

Для представленных систем координат (рисунок 3) уравнение 

Шредингера записывается в виде (1) с начальными условиями (4) и 

«условиями сшивания» (3). 
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Для барьера с треугольным срезом вершины варианта I потенциальная 

энергия барьера запишется в виде: 

𝑈(𝑥) = {

0,           𝑥 < −𝑑

(𝑈2 +
𝑥 (𝑈1 − 𝑈2)

𝑑
,   − 𝑑 ≤ 𝑥 ≤ 0  .

0,           𝑥 > 0

 (7) 

Аналогично, для барьера варианта II, высота барьера запишется в 

следующем виде: 

𝑈(𝑥) = {

0,           𝑥 < −𝑑

(𝑈2 −
𝑥 (𝑈2 − 𝑈1)

𝑑
,   − 𝑑 ≤ 𝑥 ≤ 0  .

0,           𝑥 > 0

 (8) 

Для описания барьера на контакте металл-полупроводник используется 

квадратичная зависимость потенциальной энергии от координаты [9], 

которую в первом приближении вблизи вершины барьера можно 

аппроксимировать линейной и использовать для анализа модель барьера 

треугольной формы.  

Рассмотрим треугольный потенциальный барьер, представленный на 

рисунке 4, а.  

  

а        б 

Рисунок 4 - Система координат для потенциального барьера 

треугольной (б) и ступенчатой формы (а; вариант I, 𝑈2 < 𝐸 < 𝑈1). 

Для этой формы барьера система координат выбирается таким образом, 

что начало координат соответствует точке, в которой энергия электрона 

равна высоте потенциального барьера 𝑈(𝑥) = 𝐸 на участке спада 
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потенциальной энергии. Область внутри барьера разбивается на две части 

𝜓𝐼𝐼1и 𝜓𝐼𝐼2 , для которых  𝑈(𝑥) > 𝐸 и 𝑈(𝑥) < 𝐸 соответственно.  

Для представленной системы координат (рисунок 4, а) уравнение 

Шредингера имеет вид (1), для которого потенциальная энергия барьера 

запишется следующим образом: 

𝑈(𝑥) = {

0,           𝑥 < −𝑑2

𝑈 (1 −
𝑥

𝑑
),   −𝑑1 ≤ 𝑥 ≤ 𝑑2  .

0,           𝑥 > 𝑑2

 

(9) 

Для треугольного барьера предлагаются следующие начальные 

условия: 

{
ψ(0) = 1 ,

 
𝜓̃(0) = 0,

 (10) 

и «условия сшивания»: 

{

𝜓𝐼(−𝑑1) = 𝜓𝐼𝐼1(−𝑑1)

       (
𝑑𝜓𝐼
𝑑𝑥

)
𝑥=−𝑑1

= (
𝑑𝜓𝐼𝐼1
𝑑𝑥

)
𝑥=−𝑑1

, 

{

𝜓𝐼𝐼1(0) = 𝜓𝐼𝐼2(0)

       (
𝑑𝜓𝐼𝐼1
𝑑𝑥

)
𝑥=0

= (
𝑑𝜓𝐼𝐼2
𝑑𝑥

)
𝑥=0

,
 

{

𝜓𝐼𝐼2(𝑑2) = 𝜓𝐼𝐼𝐼(𝑑2)

       (
𝑑𝜓𝐼𝐼2
𝑑𝑥

)
𝑥=𝑑2

= (
𝑑𝜓𝐼𝐼𝐼
𝑑𝑥

)
𝑥=𝑑2

 , 

(11) 

Ранее был рассмотрен потенциальный барьер ступенчатой формы, для 

которого энергия электрона выбиралась меньше высоты барьера. Однако, 

большой интерес также представляет рассмотрение случая, когда энергия 

электрона выбирается  между значениями высот ступенчатого барьера, 

т.е. 𝑈2 < 𝐸 < 𝑈1 при 𝑈1 > 𝑈2. 

Для  данного барьера в случае, когда 𝑈2 < 𝐸 < 𝑈1, система координат 

выбирается также как и для потенциального барьера треугольной формы 

(рисунок 4, б). Т.е. начало координат выбирается в точке, где энергия 
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электрона равна высоте потенциального барьера 𝑈(𝑥) = 𝐸 на участке спада 

потенциальной энергии. Область внутри барьера  также разбивается на две 

части 𝜓𝐼𝐼1и 𝜓𝐼𝐼2 , для которых 𝑈1 > 𝐸 и 𝑈2 < 𝐸.  

Для представленной системы координат (рисунок 4, а) уравнение 

Шредингера имеет вид (1), с начальными условиями (10) и «условиями 

сшивания» (11). Потенциальная энергия барьера имеет вид: 

𝑈(𝑥) = {

0,           𝑥 < −𝑑1
𝑈1,   −𝑑1 ≤ 𝑥 ≤ 0 
𝑈2,   0 ≤ 𝑥 ≤ 𝑑2
0,           𝑥 > 𝑑2

 .    (12) 

Алгоритм численного решения  

Для заданных форм потенциальных барьеров в ранее 

сформулированной математической модели дифференциальное уравнение 

второго порядка  решается численно на ЭВМ методом Рунге-Кутта 4 порядка 

точности [10]. 

Для этого приведем уравнение (1) к системе двух обыкновенных 

дифференциальных уравнений первого порядка, введя дополнительную 

функцию ψ̃(𝑥): 

𝑑ψ(x)

𝑑𝑥
= ψ̃(𝑥) .                                                  (13) 

Тогда исходное уравнение можно заменить эквивалентной системой: 

{
 

 
𝑑ψ(x)

𝑑𝑥
= ψ̃(𝑥),   

𝑑ψ̃(𝑥)

𝑑𝑥
=

2m

ћ
2
[U(x)-E]ψ(x) .

 

(14) 

Для решения системы уравнений (14) методом Рунге-Кутта расчетная 

область разбивается на N отрезков  и строится сетка. Затем для каждого узла 

сетки записывается конечно-разностная схема в соответствии с 

используемым методом: 

𝜓𝑖+1 = 𝜓𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (15) 



11 
 

𝜓̃𝑖+1 = 𝜓𝑖 +
ℎ

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4) 

                        𝑘1 = 𝜓̃𝑖  ,                             𝑙1 =
2m

ћ
2
[U(𝑥𝑖)-E]𝜓𝑖  , 

                        𝑘2 = 𝜓̃𝑖 +
ℎ

2
𝑙1,                 𝑙2 =

2m

ћ
2
[U(𝑥𝑖 +

ℎ

2
)-E] 𝜓𝑖 +

ℎ

2
𝑘1 , 

                        𝑘3 = 𝜓̃𝑖 +
ℎ

2
𝑙2,                 𝑙3 =

2m

ћ
2
[U(𝑥𝑖 +

ℎ

2
)-E]𝜓𝑖 +

ℎ

2
𝑘2  

                        𝑘4 = 𝜓̃𝑖 + ℎ𝑙3 ,                 𝑙4 =
2m

ћ
2
[U(𝑥𝑖 + ℎ)-E]𝜓𝑖 + ℎ𝑘3 . 

Характеристическими величинами в данной задаче выступают длина 

волны де Бройля электрона 

𝜆 =
2𝜋ℏ

√2𝑚𝐸
                                                (16)  

и ширина барьера d.  

Шаг по х должен выбираться малым (как минимум на порядок 

величины) по отношению к меньшей из характеристических величин: 

ℎ =
𝜆

𝑁
 ,                                                             (17) 

где N – количество отрезков разбиения. 

При этом 𝑥𝑖 :                                  𝑥𝑖 = ℎ𝑖 .                                                               (18) 

Длина расчетной области принимается равной 1,5λ. 

В качестве выходного параметра модели помимо волновых функций в I 

– III областях предлагается рассчитывать коэффициент туннельной 

прозрачности потенциального барьера.  

Известно, что в области I численное решение соответствует 

суперпозиции падающей и отраженной от барьера волн. Представим 

падающую и отраженную волны в выбранных системах координат 

следующим образом. 

Волновая функция для падающей волны может быть представлена в 

виде:  
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𝜓𝐼0+ cos(−𝑘(𝑥 + 𝑑) + 𝜃),                                     (19) 

где 𝜓𝐼0+ - амплитуда падающей волны, 𝜃  - фазовый сдвиг между падающей и 

отраженной волнами, 𝑘 – волновое число (𝑘 =
2𝜋

𝜆
).  

А отраженная волна отличается знаком k:  

𝜓𝐼0− cos(𝑘(𝑥 + 𝑑)),                                         (20) 

где 𝜓𝐼0− - амплитуда отраженной волны. 

Таким образом, решение в области I может быть представлено в 

следующем виде: 

𝜓𝐼 = 𝜓𝐼0+ cos(−𝑘(𝑥 + 𝑑) + 𝜃) + 𝜓𝐼0− cos(𝑘(𝑥 + 𝑑))           (21) 

Прошедшая волна имеет вид: 

𝜓𝐼𝐼𝐼 = 𝜓𝐼𝐼𝐼0+ cos(−𝑘𝑥).                                    (22) 

Физически это означает, что для электрона, падающего на барьер слева 

существует две возможности: просочиться под барьер, либо отразиться от 

него. И в этом случае фазы прошедшей и отраженной волн на границе 

барьера являются одинаковыми. 

В данном алгоритме предполагается, что фаза прошедшей волны на 

правой границе барьера (рисунок 1-3) соответствует амплитудному значению 

𝜓𝐼𝐼𝐼0+ ее волновой функции, которое принимается равным 1. 

Преобразуем выражение под косинусом, используя (17), (18) и введем 

замену 𝑥′ =
𝑥

𝜆
:                                 

𝑘𝑥 = 2𝜋𝑥′.                                                        (23)  

Ширина барьера 𝑑 в расчетах выбирается в долях длины волны де 

Бройля и может изменяться от 0,1 𝜆 до 𝜆: 

𝑑′ =
𝑑

𝜆
                                                               (24) 

С учетом (23),(24) выражение (21) и (22) запишется в виде: 

𝜓𝐼 = 𝜓𝐼0+ cos(−2𝜋(𝑥′ + 𝑑′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥′ + 𝑑′)) ,                 (25) 

𝜓𝐼𝐼𝐼 = 𝜓𝐼𝐼𝐼0+ cos(−𝑘𝑥′) .                                               (26) 
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Рисунок 5 – График зависимости волновой функции 𝜓 от координаты 𝑥′. 

Приближенный подбор оптимизируемых параметров 𝜓𝐼0+  , 𝜓𝐼0− ,

𝜃  предлагается проводить графическим методом, добиваясь наилучшей 

сходимости зависимостей, соответствующих численному решению, 

получаемому методом Рунге-Кутта, и аппроксимации.  

 

Рисунок 6 – График зависимости волновой функции 𝜓 от координаты 𝑥′. 

В первой области на зависимости волновой функции от координаты, 

полученной методом Рунге-Кутта, выбирается три точки в пределах длины 

волны (рисунок 6). 

Далее подставляя координаты точек в (25) получим систему из трех 

уравнений с тремя неизвестными: 

𝜓𝐼0+ cos(−2𝜋(𝑥
′
1 + 𝑑′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥

′
1 + 𝑑′)) = 𝜓(𝑥

′
1) , (27) 
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𝜓𝐼0+ cos(−2𝜋(𝑥
′
2 + 𝑑′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥

′
2 + 𝑑′)) = 𝜓(𝑥

′
2) , 

𝜓𝐼0+ cos(−2𝜋(𝑥
′
3 + 𝑑′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥

′
3 + 𝑑′)) = 𝜓(𝑥

′
3) . 

Чтобы определить параметры 𝜓𝐼0+ , 𝜓𝐼0− , 𝜃 фиксируем две переменные, 

а третью находим из условия минимума функции Ф: 

Ф = |𝐹(𝑥′1)|
2 + |𝐹(𝑥′2)|

2 + |𝐹(𝑥′3)|
2 ,                          (28) 

где  

𝐹(𝑥′1) = 𝜓𝐼0+ cos(−2𝜋(𝑥′1 + 𝑑
′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥′1 + 𝑑

′)) − 𝜓(𝑥′1) , 

𝐹(𝑥′2) = 𝜓𝐼0+ cos(−2𝜋(𝑥′2 + 𝑑
′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥′2 + 𝑑

′)) − 𝜓(𝑥′2), 

𝐹(𝑥′3) = 𝜓𝐼0+ cos(−2𝜋(𝑥′3 + 𝑑
′) + 𝜃) + 𝜓𝐼0− cos(2𝜋(𝑥′3 + 𝑑

′)) − 𝜓(𝑥′3) . 

Необходимым ограничением при подборе указанных параметров 

выступает условие нормировки амплитуд волновых функций: 

|𝜓𝐼𝐼𝐼0+|
2

|𝜓𝐼0+|
2 +

|𝜓𝐼0−|
2

|𝜓𝐼0+|
2 = 1.                                       (29) 

Уточнение значений указанных параметров предлагается проводить с 

использованием итерационного метода покоординатного спуска [21], суть 

которого заключается в следующем. 

Вначале задаются следующие параметры: 

 координаты выбранных точек (x1,1), (x2,  2), (x3,  3); 

 точность вычисления ; 

 начальные приближения параметров 𝜓𝐼0+ , 𝜓𝐼0− , 𝜃; 

 ограничивающие отрезки: для 𝜓𝐼0+отрезок [𝑎1, 𝑏1], 

                                                   для 𝜓𝐼0−отрезок [𝑎2, 𝑏2], 

                                                   для 𝜃 отрезок [𝑎3, 𝑏3]. 

При некотором начальном приближении параметра 𝜓𝐼0+  

рассчитывается значение функции Φ(𝜓𝐼0+ ) при фиксированных значениях 

параметров  𝜓𝐼0−  и 𝜃. Спуск осуществляется по 𝜓𝐼0+ в направлении убывания 

функции в диапазоне значений [𝑎1, 𝑏1]. Значение 𝜓𝐼0+   находится по 

формуле: 
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𝜓𝐼0+
(𝑘+1) = 𝜓𝐼0+

(𝑘) − ℎ1
(𝑘+1) 𝜕Φ(𝜓𝐼0+ , 𝜓𝐼0− , 𝜃)

𝜕𝜓𝐼0+
 ,                  (30) 

здесь ℎ1
(𝑘+1)

 – шаг, k – номер итерации. 

Затем осуществляется поиск минимума функции Φ(𝜓𝐼0− ) при 

постоянстве параметров  𝜓𝐼0+  и 𝜃. Спуск осуществляется  по 𝜓𝐼0− в 

направлении убывания функции в диапазоне значений [𝑎2, 𝑏2]. Значение 𝜓𝐼0−  

находится по формуле: 

𝜓𝐼0−
(𝑘+1) = 𝜓𝐼0−

(𝑘) − ℎ2
(𝑘+1) 𝜕Φ(𝜓𝐼0+ , 𝜓𝐼0− , 𝜃)

𝜕𝜓𝐼0−
 ,                  (31) 

здесь ℎ2
(𝑘+1)

 – шаг. 

Далее для нахождения минимума функции Φ(𝜃) фиксируются 

параметры 𝜓𝐼0+  и 𝜓𝐼0−. Спуск осуществляется по 𝜃 в направлении убывания 

функции в диапазоне значений [𝑎3, 𝑏3]. Значение 𝜃 находится по формуле: 

𝜃(𝑘+1) = 𝜃(𝑘) − ℎ3
(𝑘+1) 𝜕Φ(𝜓𝐼0+ , 𝜓𝐼0− , 𝜃)

𝜕𝜃
 ,                  (32) 

здесь ℎ3
(𝑘+1)

 – шаг. 

Итерационный процесс поиска заканчивается, когда выполняется 

неравенство вида: 

|Φ(𝜓𝐼0+
𝑘+1, 𝜓𝐼0−

𝑘+1, 𝜃𝑘+1) − Φ(𝜓𝐼0+
𝑘 , 𝜓𝐼0−

𝑘 , 𝜃𝑘)| < 𝜀  .             (33) 

Определив амплитуды падающей 𝜓𝐼0+ , отраженной 𝜓𝐼0− , а также зная 

амплитуду прошедшей волны 𝜓𝐼𝐼𝐼0+ можно рассчитать коэффициент 

туннелирования D, количественно характеризующий вероятность 

прохождения электронов через потенциальный барьер: 

𝐷 =
|𝜓𝐼𝐼𝐼0+|

2

|𝜓𝐼0+|
2  .                                             (34) 
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Также, зная коэффициент туннелирования D и условие нормировки, 

можно рассчитать коэффициент отражения R, определяющий вероятность 

отражения частицы от потенциального барьера:  

𝑅 =
|𝜓𝐼0−|

2

|𝜓𝐼0+|
2 . 

(35) 

В третьей главе приводятся результаты численного анализа 

математической модели туннелирования электрона через потенциальные 

барьеры некоторых заданных форм для высоты, ширины барьера и энергии 

электрона. В качестве оценки адекватности настройки алгоритма и выбора 

граничных условий проводится сравнительный анализ получаемых значений 

выходного параметра модели D c аналогичной величиной, рассчитанной 

аналитически. Анализ полученных данных свидетельствует о том, что   

последовательное усложнение формы барьера от прямоугольного к 

треугольному приводит к постоянному увеличению коэффициента 

туннелирования. 

  На рисунках 7, 8 представлены зависимости коэффициента 

туннелирования для барьеров заданных форм от ширины барьера 

рассчитанные с помощью данного алгоритма.   

Таблица 1 - Значения параметров энергии электрона и высоты барьера 

Форма барьера E, эВ U1, эВ U2, эВ 

Прямоугольная форма 

0,2 

0,5 

Ступенчатая форма. Вариант I 0,5 0,35 

Ступенчатая форма. Вариант II 0,35 0,5 

Форма с треугольным срезом. Вариант I 0,5 0,35 

Форма с треугольным срезом. Вариант II 0,35 0,5 
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Рисунок 7 - Зависимости коэффициента прохождения D от ширины 𝑑′  для 

потенциального барьера заданных форм.  

Из рисунка 7 видно, что зависимости коэффициента туннелирования 

для барьеров ступенчатой формы и с треугольным срезом вершины 

находятся в небольшом отклонении друг от друга. Кривая, принадлежащая 

зависимости коэффициента туннелирования от ширины барьера для 

потенциального барьера прямоугольной формы, находится ниже ступенчатой 

формы и формы с треугольной вершиной, а кривая, принадлежащая 

потенциальному барьеру с треугольным срезом вершины, находится выше 

остальных. Исходя из этого, можно сделать вывод, что при изменении формы 

с прямоугольной на ступенчатую и на форму с треугольным срезом вершины 

коэффициент туннелирования увеличивается.  

Таблица 2 - Значения параметров энергии электрона и высоты барьера 

Форма барьера E, эВ U1, эВ U2, эВ 

Треугольная форма 0,3 0,6 

Ступенчатая форма. Вариант I. 𝑈2 < 𝐸 < 𝑈1 0,3 0,6 0,2 

Форма с треугольным срезом. Вариант I 0,3 0,6 0,3 

Ступенчатая форма. Вариант I.  0,3 0,5 0,31 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,05 0,15 0,25 0,35 0,45 0,55 0,65
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Прямоугольная 
форма

Ступенчатая форма. 
Вариант I

Ступенчатая форма. 
Вариант II

Форма с треугольной 
вершиной. Вариант I

Форма с треугольной 
вершиной. Вариант II
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Рисунок 8 - Зависимости коэффициента прохождения D от ширины 𝑑′  для 

потенциальных барьеров заданных форм. 

Из рисунка 60 видно, что зависимости коэффициента туннелирования 

от ширины барьера для потенциального барьера треугольной формы и 

ступенчатой формы барьера (вариант I, 𝑈2 < 𝐸 < 𝑈1) до значений ширины 

барьера 𝑑′=0,32 мало различны, также малоразличны коэффициенты 

туннелирования для формы с треугольным срезом и ступенчатой (вариант II, 

U>E). 

Заключение 

Основные результаты работы:  

1) Анализ литературы по тематике работы показал, что в настоящее время 

особый научный и практический интерес представляют разработка, 

настройка и  оптимизация алгоритмов численных методов анализа 

математической модели  туннелирования электрона через 

потенциальные барьеры сложной заданной формы. 

2) Анализ результатов тестирования предложенного алгоритма для 

потенциальных барьеров различной заданной формы показал, что 

получаемые результаты адекватны физическим представлениям и 

0
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находятся в хорошем количественном соответствии с известными 

данными.  

3) Проведенное тестирование разработанного алгоритма показало, что 

для барьеров прямоугольной, ступенчатой формы и барьеров с 

треугольным срезом вершины наблюдается хорошее количественное 

согласование результатов численного моделирования с известными 

литературными данными (относительные отклонения не превышают 2 

%) в широком диапазоне значений входных параметров модели. 

4) Предложенная в работе методика расчета коэффициента туннельной 

прозрачности представляется перспективной для анализа 

туннелирования через барьеры более сложной формы. 

5) Предложенный в работе алгоритм численного анализа математической 

модели туннелирования электрона через потенциальный барьер 

заданной формы может быть применен для обучения студентов 

приемам математического моделирования. 
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