

СОДЕРЖАНИЕ

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ . 3
ВВЕДЕНИЕ . 4
1 Основное содержание работы . 6

1.1 Постановка проблемы . 6
1.2 Реализация процесса обработки конфигураций задач 8
1.3 Пример применения обработчика конфигураций для типового

конвейера . 13
ЗАКЛЮЧЕНИЕ . 16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 18

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

� CI (англ. Continuous Integration) � непререрывная интеграция;
� XML (англ. eXtensible Markup Language) � расширяемый язык размет-

ки;
� JSON (англ. JavaScript Object Notation) � текстовый формат описания

объектов на основе языка JavaScript;
� DSL (англ. Domain-Specific programming Language) � предметно-

ориентированный язык программирования.

3

ВВЕДЕНИЕ

Развитие гибких методологий разработки программного обеспечения и
их повсеместное внедрение привело к появлению новой области информа-
ционных технологий, призванной привнести управление инфраструктурой и
процессами, сопутствующими непосредственной разработке, а именно сбор-
ки, тестирования, развертывания, запуска, в сами команды по разработке
продуктов. Эта область называется DevOps (Dev от англ. Development � раз-
работка, Ops от англ. Operations � эксплуатация IT-инфраструктуры).

Данная сфера за почти десять лет своего существования популяризи-
ровала и распространила подходы непрерывной интеграции и непрерывной
доставки таким образом, что настройка и поддержание данных процессов яв-
ляется неотъемлемой частью современной разработки программ в организа-
циях и компаниях самого разного размера, как напрямую связанных с инфор-
мационными технологиями, так и занимающихся другими сферами бизнеса.

Популяризация подходов породило проблему централизованного управ-
ления так называемыми конвейерами непрерывной интеграции и поставки
в подразделениях, которые занимаются подобного рода автоматизацией для
большого числа проектов компании. С проблемой централизованных DevOps-
команд столкнулся один из клиентов компании Grid Dynamics.

В данной квалификационной работе описан подход, позволяющий суще-
ственно сократить как время внедрения конвейеров непрерывной интеграции
и поставки на основе сервера непрерывной интеграции Jenkins CI для новых
проектов компании, так и время внесения изменений для всех существующих
проектов, на основе декларативного подхода “� конфигурационных файлов,
формат которых был также разработан в рамках этой работы. Для достиже-
ния цели были поставлены следующие задачи:

� выделить ключевые задачи процессов непрерывной интеграции и непре-
рывной поставки;

� описать способ реализации этих задач в системе непрерывной интегра-
ции Jenkins CI и выявить их ключевые параметры;

� спроектировать способы хранения и обработки параметров;
� реализовать процесс создания задач сервера непрерывной интеграции

с использованием разработанного подхода к конфигурации.
В структуру бакалаврской работы входят: введение, три главы (�Поста-

4

новка проблемы�, �Реализация процесса обработки конфигураций задач� и
�Пример применения обработчика конфигураций для типового конвейера�)
и заключение.

В первой главе описывается взаимосвязь сервера непрерывной интегра-
ции и жизненного цикла изменения в проекте, выделяются ключевые задачи
такого сервера и приводятся алгоритмы работы каждой из задач.

Во второй главе представляются результаты анализа выявленных ранее
задач и их параметров. На этой основе предлагается формат хранения кон-
фигураций и способ их обработке. Также приводятся алгоритмы внедрения
разработанного подхода в процессы создания экземпляров задач на сервере
непрерывной интеграции Jenkins CI и их выполнения.

В третьей главе приводится пример использования описанного подхода
для типового конвейера проекта на языке Java, описывается код, необходи-
мый как для создания задач сервера непрерывной интеграции, так и непо-
средственная реализация выявленных алгоритмов работы этих задач, входя-
щих в конвейер непрерывной интеграции и поставки. В конце главы приво-
дятся результаты внедрения данного подхода на проекте клиента компании
Grid Dynamics.

5

1 Основное содержание работы

1.1 Постановка проблемы

В первую очередь, для введения в контекст работы, даны определения
процессам непрерывной интеграции и поставки. Ввиду того, что данные про-
цессы зачастую идут вместе особое внимаение уделено границой между ними,
наглядно представленной на рисунке:

Рисунок 1 – Непрерывная интеграция и поставка

Однако основной темой данной главы является жизненный цикл из-
менения в каком-либо проекте, процесс его принятия в основную кодовую
базу проекта и связанная с этим автоматизация. Хранение исходного кода
базируется на подходе �Git Flow� [1]. Данный подход подразумевает нали-
чие основной ветки, в которой всегда должен находиться стабильный код и
некоторое число веток разрабатываемого функционала. Попадание готового
функционала в основную ветку проходит через процесс открытия запросов
на внесение изменений. В рамках обработки этого запроса производится два
основных действия: обзор кода другими участниками проекта для проверки
соответствия написанного кода требованиям, предложения лучших подходов
решения поставленной задачи, а также автоматическая проверка кода и за-
пуск тестов.

Для конкретизации всех описываемых процессов было введено поня-
тие типового проекта, основывающееся на анализе подходов, применяемым
к разработке продуктов клиента компании Grid Dynamics. Типовым называ-
ется такой проект, который не содержит значительных отличий в процессе
сборке, тестирования и развертывания от всех остальных проектов компа-
нии. Таким образом, основным языком разработки конечных продуктов (но
не решения, предлагаемого в данной квалификационной работе) стал наибо-
лее популярный в мире [2, 3] язык Java, а системой сборки � Apache Maven.
Все остальные детали являются малозначительными в рамках этой работы.

6

Автоматическая проверка включает в себя обычно компиляцию исход-
ного кода, запуск модульного тестирования и статического анализа [4, c.60,
87]. Данный шаг является первым в конвейере непрерывной интеграции. Его
выполняет первая рассмотренная задача сервера непрерывной интеграции
под названием Pull Request Build.

После попадания изменения в основную ветку запускается конвейер
непрерывной интеграции и поставки, описанный в [4, 5]. Ключевыми шага-
ми конвейера являются:

� повторная сборка, возможно, с более глубокой (а соответственно дол-
гой) оценкой кода, повторным запуском тестов и сборкой конечного ар-
тефакта и его сохранением во временный репозиторий;

� развертывания на тестовом окружении;
� запуск артефакта на тестовом окружении;
� запуск функциональных, регрессионных, нагрузочных тестов;
� сохранение в репозиторий кандидатов для релизов в случае успешного

прохождения всех проверок
Для каждого из вышеописанных действий было дан пошаговый алго-

ритм задач на сервере Jenkins CI: Project Build, Deploy, Maintenance, Post
Deployment Validations, Promote соответственно.

Также в данной главе обуславливается выбора сервера непрерывной
интеграции Jenkins CI, который является самым популярным [6] среди ана-
логичных решений: по состоянию на 2016 год 30% организаций, разрабатыва-
ющих более 50 продуктов используют именно это решение. Jenkins CI предо-
ставляет возможность создания различных задач, то есть некоторых после-
довательностей действий, выполняемых сервером и имеющими входные па-
раметры, как при помощи веб-интерфейса, что может быть актуально при
разработке достаточно малого числа проектов, так и при помощи программ-
ного интерфейса.

Далее, приведены технологии, используемые для автоматизации созда-
ния задач с использованием предоставляемого программного интерфейса.
Наибольшее внимание уделено двум расширениям: Jenkins JobDSL, кото-
рый позволяет описывать задачи при помощи расширения языка Groovy [7]
и Jenkins Pipeline Plugin, который дает возможность задавать шаги задач
также на языке Groovy с некоторыми дополнениями [8] для запуска класси-

7

ческих шагов. Последний из них привносит парадигму Pipeline as a Code [9],
являющегося прямым аналогом подхода Infrastructure as a Code для органи-
зации конвейеров непрерывной интеграции и поставки.

В последнем разделе главы показывается, что несмотря на достаточно
удобные и эффективные решения по описанию задач с использованием этих
двух расширений, при настройке процессов непрерывной интеграции и по-
ставки на множестве типовых проектов так или иначе возникают проблемы
с распространением изменений во все или несколько проектов с минималь-
ными усилиями ввиду обширной кодовой базы. Кроме этого, введение нового
проекта занимает далекое от минимального время, что также является зна-
чительной проблемой.

1.2 Реализация процесса обработки конфигураций задач

Глава является центральной в рамках данной квалификационной рабо-
ты и описывает разработанный подход к хранению и обработке конфигураций
задач сервера Jenkins CI.

В первую очередь, был представлен способ описания задач с использо-
ванием расширения JobDSL, который заключается в создании класса задачи
с описанием шагов, а также разрабатываемого подхода к хранению конфи-
гураций. Были рассмотрены два ключевых типа задач:

� произвольные (англ. freestyle), которые имеют доступ ко всем класси-
ческим расширениям, задаваемые последовательностью шагов;

� задачи на основе Pipeline Plugin. Они имеют единственный шаг � вызов
этого самого расширения, внутри которого при помощи языка, основан-
ного на Groovy описаны различные действия.
Далее был описан алгоритм создания экземпляров задач на самом сер-

вере при помощи вспомогательной задачи, называющейся Seed :
1. Скачать и распаковать артефакт с исходным кодом и конфигурациями

задач.
2. Для каждого проекта проанализировать конфигурации запустить про-

цесс генерации задач.
3. В случае ошибки при генерации, откатить изменения до предыдущего

состояния. Обработка ошибок такого рода встроена в генератор JobDSL
и выполняется автоматически.
Во втором разделе главы проведен анализ параметров выявленных в

8

предыдущей главе задач сервера непрерывной интеграции. Было выявлено,
что все параметры можно разбить на некоторые группы: настройки сервера
репозитория хранения кода, параметры сборки и тестирования, информация
об облачном сервисе создания окружений и доступа к нему и так далее.

Эти группы могут быть определены на разных уровнях и переопреде-
лять свое содержимое (или добавлять новое) на более нижних. Было выде-
лено три уровня:

1. Существует глобальная конфигурация, устанавливающая ключевые па-
раметры для всех задач. Это конфигурация первого уровня.

2. Существуют общие конфигурации по типам задач. Это конфигурация
второго уровня.

3. Последним, третьим, уровнем является конфигурация проекта, кото-
рая только необходимые параметры для сборки конкретного проекта
и старается как можно больше переиспользовать конфигурации более
высоких уровней.

Таким образом, базисом идеи стало наследование конфигураций, основанное
на парадигме наследования из объектно-ориентированных языков програм-
мирования [10–12]

Для хранения всех конфигураций был выбран формат, предоставляе-
мый классом обработчика GroovyConfigSlurper [13] ввиду его близости к ос-
новному языку разработки.

Конфигурационные файлы уровней 1 и 2 имеют формат набора пар
ключ-значение (ассоциативных массивов). Эти конфигурации были названы
конфигурациями первого типа. Каждое значение на верхнем уровне также
является набором пар ключ-значение. Таким образом, в более глубоких кон-
фигурациях значениями могут выступать строка, число, булевское значение
или список.

Конфигурационный файл уровня 3 отличается по своему формату вслед-
ствие необходимости хранения описания самих задач для сервера непрерыв-
ной интеграции в рамках одного проекта. Это конфигурации второго типа.
Каждый файл этого формата содержит секции, то есть пары ключ-значение,
где ключом выступает название задачи, а значением другие ассоциативные
массивы, описывающие параметры задачи. Например:

1 MyBuildJob {

2 github {

9

3 org = "myOrg"

4 repo = "myRepo"

5 }

6 maven {

7 goals = "compile test sonar:sonar deploy"

8 extraParams = "-Dx=y"

9 }

10 }

11 MyPromotionJob {

12 promotion {

13 groupId = "com.company.project"

14 }

15 }

Файл конфигурации задач имеет следующие секции:
1. Секция глобального наследования. Имеет фиксированное имя imports.

Эта секция является списком, включающим имена файлов, которые
нужно последовательно применить к конфигурациям задач в порядке
следования в первую очередь.

2. Секция файл-локального наследования. Имеет фиксированное имя common.
Данная секция будет применена ко всем задачам в рамках данного фай-
ла конфигураций.

3. Секция опционального наследования. Имя начинается с с двух нижних
подчеркиваний __. Данные параметры будут только применены к тем
задачам, которые сами выберут наследование конкретных секций.

4. Обязательные секции задач. Могут иметь произвольные имена, допус-
каемые сервером Jenkins CI [14].Каждая секция определяет класс JobDSL
для загрузки и параметры самой задачи. Каждая секция имеет соб-
ственную подсекцию наследования, в которую можно включить внеш-
ний конфигурационный файл или секцию опционального наследования.
Таким образом, ключевым отличием файлов конфигураций первого ти-

па от второго типа является отсутствие возможности обращаться к другим
файлам и секциям. Наглядное представление правил наследования и уровней
вложенности:

Далее, был разработан процесс обработки и обеспечения механизма на-
следования в момент загрузки конфигурационных файлов второго типа при
создании экземпляров задач на сервере, заключающийся в следующих шагах:

1. Определить секции опционального наследования и исключить из явной
обработки, сохранив предварительно в список.

10

Рисунок 2 – Конфигурационный файл второго типа с основными видами наследования
секций

2. Создать пустую начальную конфигурацию, общую для всех описанных
задач.

3. Выяснить, существует ли секция глобального наследования и обрабо-
тать ее, добавив результат к начальной конфигурации.

4. Выяснить, существует ли секция файл-локального наследования и до-
бавить ее содержимое к начальной конфигурации.

5. Для каждой секции, представленной в файле и являющейся секцией
описания задач, создать экземпляры конфигураций c данным состоя-
нием, полученным из предыдущей обработки секций.

6. В каждый результат добавить некоторые поля, необходимые для успеш-
ной генерации задач.

7. Вернуть список обработанных конфигураций первого типа в место вы-
зова.
Также был разработан алгоритм обработки каждой секции:

1. Создать новый экземпляр конфигурации с текущим содержанием.
2. Определить, есть ли в секции список наследований.
3. Если такой список найден, то необходимо запустить процесс обработки

слева направо по всем конфигурационным файлам первого типа.
4. Если текущим элементом списка является секция опционального насле-

11

дования, то найти эту секцию в данном файле конфигурации и добавить
ее содержимое к текущей конфигурации согласно правилу сложения ас-
социативных массивов. Если указанная секция не найдена, то необхо-
димо прекратить выполнение и вывести ошибку.

5. Если текущим элементом списка является другой файл, то необходимо
открыть этот файл и сложить его содержимое аналогичным образом.
Если файл не найден, следует вывести ошибку и прекратить работу.

6. Пройти по содержанию текущей секции и сложить его с существующей
конфигурацией. На этом этапе обработка заканчивается.
Наглядное представление процесса обработки конфигурационных фай-

лов:

Рисунок 3 – Процесс обработки

Кроме этого в данной главе рассматривается вопрос об использовании
конфигураций не только во время создания задач на сервере непрерывной
интеграции, но и во время их выполнения. Особенную актуальность этот во-
прос имеет в отношении задач типа Pipeline Plugin, которые получают очень
мало информации о параметрах работы при создании самих экземпляров.
Было предложено четыре различных способа, суть которых заключается в
следующем:

12

1. При обработке скрипта для Pipeline Plugin заменять определенный то-
кен строковым представлением конфигурации в формате JSON или
XML.

2. Создать функцию повторной обработки конфигурационных файлов в
рамках синтаксиса и шагов Pipeline Plugin.

3. Создать отдельную задачу, получающую на вход название задачи и вер-
сию кода автоматизации проектов и проводящую повторную обработку.
Результат сохраняется в переменную окружения, которую затем можно
считать из вызывающей задачи.

4. Сохранять закодированную конфигурацию на сетевое хранилище пар
ключ-значение, например, etcd [15] или Consul [16] в момент создания
задачи, а затем получать при помощи запроса к данным системам во
время каждого запуска задачи.
С учетом всех проанализированных достоинств и недостатков, оцени-

ваемых по следующим критериям: инкапсуляция данных и уровней ответ-
ственности, сложность интеграции, необходимость внешних ресурсов, время
работы, был выбран и внедрен вариант 3.

1.3 Пример применения обработчика конфигураций для типо-
вого конвейера

В данной главе было дано описание задачам, входящим в конвейер
непрерывной интеграции и поставки для типового проекта.

Для каждой задачи были описаны следующие элементы:
� конфигурационный файл первого типа, если предполагалось, что дан-

ная задача может быть переиспользована в проекте автоматизации;
� секция из конфиуграционного файла для типового проекта, реализую-

щая данную задачу;
� алгоритм работы с учетом выполнения на сервере непрерывной инте-

грации Jenkins CI;
� класс для создания экземпляра задачи на основе расширения JobDSL с

использованием конечной конфигурации, полученной после обработки
разработанным способом в момент создания экземпляра задачи;

� описание работы конкретных шагов, вызываемых в рамках выполнения
задачи;

� вспомогательные скрипты для формирования параметров задач, напри-

13

мер, для получения веток из репозитория исходного кода, или же для
получения версий артефактов из репозитория бинарных артефактов;

� для задач, которые могли быть реализованы при помощи Pipeline Plugin,
приведен скрипт для этого расширения.
Задачи Project Build, Post Deployment Validations, Pull Request Build

реализованы как freestyle-задачи и не требуют скриптов для Pipeline Plugin.
Для каждой из этих задач реализован один общий шаг, заключающийся в
вызове системы сборки Maven с заданными параметрами. Данный шаг осо-
бым образом показывает гибкость разработанного подхода, заключающуюся
в возможности настроить один и тот же шаг конвейера или задачи самым
различным образом при помощи соответствующей конфиуграционной сек-
ции. Все шаги этих задач целиком и полностью были заданы при помощи
JobDSL, то есть хранятся в классах задач.

Задачи Pipeline,Promote, Deploy, Maintenance имеют вид задач Pipeline
Plugin. Для них необходимо были описаны скрипты, которые должны хра-
ниться в том же репозитории, что и весь код автоматизации проекта. В каче-
стве параметров они имеют названия других задач и координаты артефактов.

Входной точкой разработанного конвейера непрерывной интеграции и
поставки является задача AutoBuild, рассмотренная в процессе анализа ти-
повых конвейеров и внесенная в ход работы ввиду определенных ограниче-
ний сервера непрерывной интеграции. Эта задача вызывает ключевую задачу
Pipeline, которая в свою очередь вызывает каждую из разработанных задач,
выполняющих сборку артефакта, развертывание и запуск приложения на те-
стовом окружении и запуск функционального тестирования против данного
окружения.

В качестве типового проекта был взять Spring Pet Сlinic [17], представ-
ляющий собой приложение, построенное на классической трехуровневой ар-
хитектуре и использующее систему сборки Maven.

В работе были подробно описаны конфигурации обоих типов с указани-
ем возможных подходов наследования их при увеличении числа поддержи-
ваемых проектов.

В последнем разделе главы также были описаны результаты внедрения
разработанного подхода, подтвержденные прилагаемой к квалификационной
работе справкой о внедрении. После внедрения описанного подхода на про-

14

екте заказчика время по внесению изменений в существующие конвейеры
непрерывной интеграции и поставки, а также время добавления новых про-
ектов существенно сократилось, что отражено на графике выполнения задач,
основывающемся на приватной системе управления проектами клиента ком-
пании:

Рисунок 4 – Показатели эффективности решения

15

ЗАКЛЮЧЕНИЕ

В ходе данной работы была рассмотрена проблема централизации ко-
манд, внедряющих процессы непрерывной интеграции и непрерывной постав-
ки в проекты по разработке программного обеспечения для тех или иных
сфер бизнеса.

Эта проблема заключается в отсутствии эффективных методов центра-
лизованного управления автоматизацией процессов сборки, развертывания,
запуска и тестирования программного обеспечения даже при использовании
последних подходов к автоматизации данных действий предлагаемых наибо-
лее популярной платформой для построения описываемых в работе процес-
сов � Jenkins CI.

Для решения существующей задачи и достижении цели по разработке
эффективного подхода к управлению конфигурациями задач сервера непре-
рывной интеграции Jenkins CI был применен комплексный подход, заключав-
шийся в первую очередь в выявлении, описании и анализе задач, входящих в
жизненный цикл разрабатываемого программного обеспечения и изменений
в нем, типовых проектов клиента компании Grid Dynamics, столкнувшегося
с необходимостью эффективного управления множеством продуктов един-
ственной DevOps-командой.

Результаты анализа позволили выделить ключевые параметры каждой
задачи. Структура этих параметров и варианты использования были исследо-
ваны с целью выявления наиболее удобного и эффективного варианта пред-
ставления.

Далее были разработаны способы хранения конфигураций и их обра-
ботки. Данные процессы были внедрены в ход работы задачи сервера Jenkins
CI по созданию экземпляров других задач для унифицированной передачи
требуемых параметров большому числу разрабатываемых продуктов. Кроме
этого было проведено сравнение различных вариантов обеспечения доступа
к конфигурациям и настройкам во время выполнения самих задач.

В качестве примера применения разработанного подхода в данной ква-
лификационной работе было дано описание задач, скриптов и конфигураций
для типового проекта разрабатываемого на языке Java с использованием си-
стемы сборки Maven.

Представленный подход был также внедрен на проекте клиента ком-

16

пании и позволил значительно сократить время по внесению изменений в
существующие продукты, а также время внедрения процессов непрерывной
интеграции и поставки для новых разрабатываемых проектов.

17

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 A successful Git branching model [Электронный ресурс]. � URL:
http://nvie.com/posts/a-successful-git-branching-model/ (Дата
обращения 20.05.2017). Загл. с экр. Яз. англ.

2 Java Software | Oracle [Электронный ресурс]. � URL: https://www.

oracle.com/java/index.html (Дата обращения 10.05.2017). Загл. с экр.
Яз. англ.

3 TIOBE Index [Электронный ресурс]. � URL: https://www.tiobe.com/

tiobe-index/ (Дата обращения 10.05.2017). Загл. с экр. Яз. англ.

4 Duvall, P. M. Continuous Integration: Improving Software Quality and Re-
ducing Risk / P. M. Duvall, A. Glover, S. Matyas. � Addison-Wesley Profes-
sional, 2007.

5 Humble, J. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation / J. Humble, D. Farley. � Addison-Wesley
Professional, 2011.

6 The State of Jenkins - 2016 Community Survey [Электронный
ресурс]. � URL: https://jenkins.io/blog/2017/03/24/

jenkins-community-survey/ (Дата обращения 22.05.2017). Загл. с
экр. Яз. англ.

7 Job DSL Plugin [Электронный ресурс]. � URL: https://wiki.

jenkins-ci.org/display/JENKINS/Job+DSL+Plugin (Дата обращения
11.05.2017). Загл. с экр. Яз. англ.

8 Pipeline Syntax [Электронный ресурс]. � URL: https://jenkins.io/

doc/book/pipeline/syntax/ (Дата обращения 11.05.2017). Загл. с экр.
Яз. англ.

9 Pipelines as code [Электронный ресурс]. � URL: https://www.

thoughtworks.com/radar/techniques/pipelines-as-code (Дата
обращения 11.05.2017). Загл. с экр. Яз. англ.

10 Tempero, E. What programmers do with inheritance in java // Lecture Notes
in Computer Science. � Vol. 7920. � Springer, Berlin, Heidelberg: 2013. �
Pp. 577–601.

18

http://nvie.com/posts/a-successful-git-branching-model/
https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://jenkins.io/blog/2017/03/24/jenkins-community-survey/
https://jenkins.io/blog/2017/03/24/jenkins-community-survey/
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://www.thoughtworks.com/radar/techniques/pipelines-as-code
https://www.thoughtworks.com/radar/techniques/pipelines-as-code

	ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ
	ВВЕДЕНИЕ
	Основное содержание работы
	Постановка проблемы
	Реализация процесса обработки конфигураций задач
	Пример применения обработчика конфигураций для типового конвейера

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

