

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 2
1 Методы моделирования водной поверхности . 3

1.1 Необходимые математические обозначения. 3
1.2 Существующие алгоритмы моделирования водной поверхности . . 3

1.2.1 Аппроксимация суммой синусов . 3
1.2.2 Волны Герстнера. 4
1.2.3 Статистический алгоритм. 6

2 Реализация приложения . 8
2.1 Используемые инструменты и технологии. 9
2.2 Реализация модели поверхности . 9
2.3 Быстрое преобразование Фурье . 11

ЗАКЛЮЧЕНИЕ . 13

ВВЕДЕНИЕ

Настоящая работа посвящена важному направлению в современной ин-
дустрии компьютерных игр и кинематографе— проблеме моделирования по-
верхности воды. На внешний вид поверхности океана или реки влияет множе-
ство условий окружающей среды, таких как скорость ветра, скорость течения
жидкости, различные источники освещения и окружающие объекты. Для со-
здания реалистичного изображения высокого качества при моделировании
необходимо учитывать все перечисленные факторы.

Целью практической части работы является создание фотореалистич-
ной модели поверхности воды в библиотеке DirectX 11 на языке Visual C++.
Для быстрого рендеринга поверхности должно быть использован алгоритм
быстрого преобразования Фурье. Модель должна включать дополнительные
элементы, присутствующие в реальной среде: модель освещения солнечным
светом, фотореалистичный горизонт и отражение цветов неба на поверхности
воды. Для решения поставленной задачи необходимо:
— Рассмотреть основные алгоритмы моделирования поверхности воды в

компьютерной графике
— Реализовать модель поверхности с помощью графической библиотеки

DirectX11
— Реализовать наиболее естественную модель освещения водной поверх-

ности
— Реализовать возможность интерактивного взаимодействия с пользова-

телем

2

1 Методы моделирования водной поверхности

Существует две группы алгоритмов, используемых в современных ком-
пьютерных графических системах. Алгоритмы первой группы используют
разложение волн, возникающих на поверхности океана в сумму синусоид, с
характеристиками, близкими к реальной среде. Алгоритмы второй группы
также используют разложение колебаний волны на сумму волн, но при этом
характеристика каждой такой волны является случайной величиной.

1.1 Необходимые математические обозначения

Оба рассматриваемых алгоритма из каждой группы имеют похожий
математический аппарат, ввиду этого введём общие обозначения.

Будем рассматривать дискретную сетку размером N наM точек. Здесь
и далее: Lx, Lz —длина и ширина реального участка водной поверхности, мо-
делируемой дискретной сеткой. λ—длина волны, g—ускорение свободного
падения, взятое в данной работе равным 9.8m/s2, t—постоянно увеличива-
ющееся время, A— амплитуда волны.

1.2 Существующие алгоритмы моделирования водной поверх-
ности

1.2.1 Аппроксимация суммой синусов

В самом простом случае приближения физической модели можно по-
пытаться задать аналитическую функцию h(~x), которая будет моделировать
высоту конкретной точки ~x дискретной сетки. Простой алгоритм аппроксима-
ции суммой синусов подробно описан в статье «Моделирование поверхности
воды в режиме реального времени на платформах с многоядерной архитек-
турой» [?].

Для одной периодической волны с направлением ~k, высота в точке ~x
равна:

h = sin(~k~x) (1)

Ввести зависимость от времени можно, добавив постоянное смещение по фазе
для дискретного момента времени t:

h = sin(~k~x+ φt) (2)

Введём понятие амплитуды волны, как максимального расстояния «подъёма»

3

точки дискретной сетки. Тогда уравнение примет вид:

h = A sin(~k~x+ φt) (3)

В случае n волн достаточно просуммировать высоту, вычисляемую от каждой
такой волны:

h =
N∑
i=1

Ai sin(~ki~x+ φt) (4)

Алгоритм аппроксимации суммой синусов является самым простым из
описанных в данной работе. Данный способ даёт очень низкое качество ренде-
ринга. Возможен случай, когда на точки дискретной сетки выпадут средние
значения высоты волны. Тогда вся поверхность будет вырождена в плоскость.
Эту проблему можно решить переходом к более качественным алгоритмам,
либо увеличению размера дискретной сетки.

1.2.2 Волны Герстнера

Метод волн Герстнера описывает наиболее приближенную по физиче-
ским характеристикам модель волн, возникающих на водной поверхности.

Волна Герстнера является точным решением уравнения Эйлера тече-
ния несжимаемой жидкости, описывающим перемещение периодичной гра-
витационной волны на водной поверхности. В источнике [?] упоминается, что
Волны Герстнера были независимо описаны Франтишеком Йозефом Герст-
нером в 1802 году и Уильямом Джоном Макуорном Ранкином в 1863 году.
Однако применение в компьютерной графике этот способ получил сравни-
тельно недавно.

В методе волн Герстнера, используемом в компьютерной графике ис-
пользуется карта высот для дискретной сетки и на каждой итерации ренде-
ринга для одной волны пересчитываются все три координаты для каждой
точки поверхности согласно формулам:

~x = ~x0 −
~k

k
A sin(~k · ~x0 − ωt), (5)

y = A cos(~k · ~x0 − ωt) (6)

Начальное положение точки на моделируемом участке — ~x0, а величина k

4

обратно пропорциональна длине волны λ согласно формуле:

k =
2π

λ
(7)

Векторная величина ~k, называемая также «волновым вектором» имеет раз-
мерность R2 и указывает направление движения воды на плоскости, парал-
лельной плоскости дискретной сетки. Частота ω зависит от характеристики
глубины моделируемой поверхности. При больших размерах глубины она вы-
ражается формулой параметра k, описанной в формуле выше:

ω2(k) = gk (8)

Однако для глубины D, сравнимой с длиной волны, частота имеет вид:

ω2(k) = gk th(kD) (9)

Из уравнения видно, что частота движения волны затухает при глубине D
близкой к нулю, а при глубине D намного большей λ величина th(kD) в пре-
дельном переходе обращается в единицу, и уравнение (9) принимает форму
уравнения (8).

С первого взгляда кажется, что волны Герстнера — небольшая модифи-
кация простой аппроксимации суммой синусов, однако ввиду того, что для
волны Герстнера пересчитываются сразу все три координаты, такая волна
«сгущает» точки к наиболее острым пикам поверхности, давая высокую точ-
ность триангуляции возвышенностей. Сравнение методов простой аппрокси-
мацией суммы синусов и волн Герстнера приводится в статье «Around GPU
Gems. Эффективное моделирование воды на основе физических моделей» [?].

Уравнения (5), (6) не дают реалистичной картины, так как моделиру-
ют лишь одну периодичную волну. Однако набором волновых векторов ~ki,
амплитуд Ai, частот ωi и фаз φi для n волн i = 1, 2, ..., N − 1, N можно за-
дать поверхность, просуммировав перемещения точки, оказанной каждой из
N волн по следующим формулам:

~x = x0 −
N∑
i=1

~ki
ki
Ai sin(~ki · ~x0 − ωit+ φi), (10)

5

y =
N∑
i=1

Ai cos(~ki · ~x0 − ωit+ φi) (11)

С вычислительной точки зрения затратно в бесконечном цикле про-
водить вычисления величины ω, поэтому используется следующий подход:
пусть форма поверхности будет повторяться через интервал времени T . Вве-
дём величину ω0, согласно формуле:

ω0 =
2π

T
(12)

Вместо величины ω(k) будем пользоваться предварительно вычисленной ве-
личиной ω̄(k), задаваемой формулой:

ω̄(k) =
⌊ω(k)

ω0

⌋
ω0 (13)

1.2.3 Статистический алгоритм

Идея использования случайных чисел для генерирования поверхности
воды была впервые описана Джерри Тессендорфом в статье [?]. Статисти-
ческий метод основан на чисто эмпирических наблюдениях за поверхностью
океана. Суть метода состоит в суммировании N ×M случайных волн по сле-
дующей формуле:

h(~x, t) =
∑
~k

h̃(~k, t) exp(i~k · ~x) (14)

Здесь ~k—двумерный вектор, с координатами: ~k = (kx, kz), kx = 2πn/Lx,
kz = 2πm/Lz, где числа n и m принадлежат интервалам −N/2 ≤ n < N/2 и
−M/2 ≤ m < M/2 соответственно.

Величина h̃(~k, t) вычисляется через карту высот в момент времени
t = 0. Карта высот в начальный момент времени имеет вид h0:

~h0(k) =
1√
2

(ξr + iξi)

√
Ph(~k) (15)

Здесь величины ξr и ξi распределены по нормальному закону с математиче-
ским ожиданием, равным нулю, и единичным среднеквадратичным отклоне-
нием.

В указанной формуле величина Ph(~k) — спектр Филлипса, который име-

6

ет вид:

Ph(~k) = A
exp(−1/(kL)2)

k4
|~k~ω|2 (16)

Спектр Филлипса задаёт начальную структуру водной поверхности. При раз-
личных задачах дизайна можно изменять вид этой формулы на практике,
домножая одну или несколько составляющих формулы на эмпирически по-
добранные коэффециенты.

Один раз вычислив начальную карту высот, можно в момент времени
t вычислить величину h̃(~k, t) по формуле:

h̃(~k, t) = h̃0(~k) exp(iω(k)t) + h̃∗0(−~k) exp(−iω(k)t) (17)

Пусть N = M = 512. Тогда при вычислении высоты точки методом «в лоб»,
потребуется произвести NM вычислений для нахождения величины h̃(~k, t)

для NM волн. Также на поверхности у нас находится NM вершин, для ко-
торых необходимо вычислять величину h̃(~k, t) NM раз. Общая сложность
вычислений для сетки равна 5124 = 236.

7

2 Реализация приложения

Было разработано оконное Windows приложение с двумя кнопками—
для перехода в режим полного экрана и для остановки процесса непрерыв-
ного течения воды. Пользователь может перемещаться по сцене нажатием
стрелочных клавиш, либо набором кнопок «W», «S», «A», «D» на клавиатуре.
Также возможно управлять вращением камеры с помощью мыши. Примеры
запусков приложения представлены на рисунках 1 и 2.

Рисунок 1 – Результат запуска приложения

Рисунок 2 – Результат запуска приложения. Крупный масштаб.

8

В процессе работы приложение в режиме реального времени моделиру-
ет водную поверхность океана. На поверхности учитывается источник света —
Солнце и отражение цветов неба (скайбокса).

2.1 Используемые инструменты и технологии

Приложение реализовано в среде Visual Studio 2008 под графическую
платформу DirectX, которая согласно статье [?] является стандартом разра-
ботки графических приложений под семейство операционных системWindows.
Были использованы комплект разработчика DirectX SDK и графический
фреймворк компании Microsoft —DXUT. Разработка велась под операцион-
ной системой Windows 10. Для компиляции приложения необходимо устано-
вить набор библиотек DirectX SDK, согласно инструкции, приведённой в [?].
При разработке использовалась версия DirectX SDK 11 (2010 June). Для вер-
сионирования изменений файлов была использована система контроля версий
Git 2.12.0.

Для увеличения скорости разработки был использован графический
фреймворк с открытым исходным кодом—DXUT. С помощью данного ин-
струмента возможно избежать работы с Win32 API для создания окна, управ-
ляющих элементов и отлавливания событий пользователя и переложить дан-
ную задачу на фреймворк. Процесс подключения фреймворка описан в офи-
циальной документации Microsoft в [?].

2.2 Реализация модели поверхности

В приложении реализован статистический алгоритм с использованием
быстрого преобразования Фурье. В качестве моделей освещения использо-
ваны модели равномерного освещения, бликовая модель освещения Фонга и
диффузная модель. Для большей реалистичности написан алгоритм ренде-
ринга уровня яркости в зависимости от угла нормали согласно уравнению
Френеля в текстурную карту.

Для реализации статистического алгоритма необходимо:
1. Реализовать рендеринг карты высот в момент времени t = 0 с помощью

вычисления величины h0.
2. Описать алгоритм вычисления величины, описанной в уравнении (17).
3. Описать процедуру быстрого преобразования Фурье для обновления

карты высот в режиме реального времени.

9

Для моделирования поверхности океана в приложении создан специальный
класс Ocean Simulator со структурой, изображённой на рисунке 3:

Рисунок 3 – UML представление класса «Ocean Simulator»

Все характеристики поверхности описаны в отдельной структуре
Ocean Parameter, имеющей следующие составляющие:

1 struct OceanParameter

2 {

3 // Размер дискретной сетки

4 int dmap_dim;

5 // Длина участка поверхности

6 float patch_length;

7 // Множитель для ускорениязамедления/ течения

8 float time_scale;

9 // Множитель для увеличение амплитуды волн

10 float wave_amplitude;

11 // Направление ветра

12 D3DXVECTOR2 wind_dir;

13 // Скорость ветра

14 float wind_speed;

15 float wind_dependency;

16 };

В конструкторе класса OceanSimulator производится начальное вычис-
ление величины h0(~k) из формулы (15) c помощью метода initHeightMap и
вызова метода updateDisplacementMap для задания карты высот в момент
времени t = 0.

Для простоты реализации алгоритма была взята дискретная сетка с
равными размерами по длине и ширине. То есть: N = M,Lx = Ly. В приве-
дённом выше коде размер дискретной сетки содержится в переменной
height_map_dim, а реальный размер поверхности в переменной patch_length.
Так как h0 —комплексная величина, результат вычисления приходится хра-
нить в массиве двумерных векторов _h0 для запоминания как действитель-

10

ной, так и мнимой части каждой величины h0. Действительная и мнимая
часть величины h0 вычисляются домножением значения Филлипса на слу-
чайные числа Gauss() в строчках кода 17-20.

Функция Phillips также определена в файле «ocean_simulator.cpp» и
работает согласно определению формулы (16). Её код полностью реализует
вычисления формулы (16).

При вычислении величины h0(~k) используется функция Gauss. Так как
стандартная библиотека языка C++ не содержит генератора случайных чи-
сел, распределённых по нормальному закону, используется метод полярных
координат для получения нормально рспределённых случайных чисел.

Вычисление величины из формулы (17) производится в вызове метода
updateDisplacementMap c помощью функции UpdateSpectrum, описанной в
шейдере «ocean_simulator.hlsl».

В функции для каждой волны ~k = (kx, ky) берётся значение g_inputH0,
вычисленное в конструкторе класса OceanSimulator. Далее для волны на-
ходится сопряжённая ей волна ~k∗ = (N − kx,M − ky) с помощью индекса,
описанного в строчке [3]. Находится второе соответствующее ей значение из
массива g_inputH0. Далее по требованию формулы (17) оба значения требу-
ется умножить на величины exp(iω(k)t) и exp(−iω(k)t) соответственно. Так
как умножение комплексного числа h0 на экспоненту, равнозначно повороту
вектора данного комплексного числа на аргумент экспоненты, в строке 11 и 24
вычисляются синус и косинус аргумента, с помощью функции языка HLSL—
sincos, а в строках 19 — 20 и 25 — 26 осуществляется умножение комплексных
чисел c помощью матрицы поворота двумерного вектора. Далее результаты
складываются и отправляются в глобальный массив g_OutputHt. Полностью
файл «ocean_simulator.cpp» представлен в приложении В.

2.3 Быстрое преобразование Фурье

В файле «fft_shader.hlsl» описано преобразование «Бабочка» восьмого
порядка fft8:

1 void fft8(inout float2 D[8]) {

2 batterfly(D[0], D[4], 0);

3 batterfly(D[1], D[5], 0);

4 batterfly(D[2], D[6], 0);

5 batterfly(D[3], D[7], 0);

6

11

7 batterfly(D[0], D[2], 0);

8 batterfly(D[1], D[3], 0);

9

10 batterfly(D[4], D[6], -PI / 2.0);

11 batterfly(D[5], D[7], -PI / 2.0);

12

13 batterfly(D[0], D[1], 0);

14 batterfly(D[4], D[5], -PI / 4.0);

15 batterfly(D[6], D[7], -PI / 4.0 * 3);

16 batterfly(D[2], D[3], -PI / 2.0);

17 }

В приведённом выше коде вызову batterfly соответствует операция «Бабоч-
ка» первого порядка, где третьим аргументом задаётся угол поворота второ-
го элемента преобразуемой пары. Так как двухточечное преобразование Фу-
рье записывается через операцию «Бабочка» c единичным коэффициентом,
то двухточечным преобразованиям точек (x[0], x[4]), (x[2], x[6]), (x[1],
x[5]), (x[3], x[7]) соответствуют вызовы функции batterfly с нулевым уг-
лом поворота. Также согласно схеме необходимо выполнить двухточечные
преобразования точек (D[0], D[2]) и (D[1], D[3]) с нулевым коэффициен-
том. Далее в строчках 10, 11, 16 выполняется двухточечное преобразование
с коэффициентом W 1. В строчке 15 — преобразование с множителем W 3.

Сам код функции batterfly выглядит как представлено ниже:
1 void batterfly(inout float2 a, inout float2 b,

2 float phase) {

3 float2 c = a;

4 float2 d = b;

5 //Повернём копию второго элемента на угол phase

6 rotate(d, phase);

7

8 // a = a + Wb;

9 a.x = c.x + d.x;

10 a.y = c.y + d.y;

11

12 // b = a - Wb;

13 b.x = c.x - d.x;

14 b.y = c.y - d.y;

15 }

12

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы были изучены различные способы ренде-
ринга водной поверхности в современной компьютерной графике. Реализован
статистический алгоритм моделирования водной поверхности в компьютер-
ной графике и основные приёмы, использующиеся при решении данной зада-
чи: метод скайбокса, различные модели освещения. Был получен опыт раз-
работки под графическую платформу DirectX11, реализовано интерактивное
приложение на языке Visual C++, моделирующее водную поверхность океа-
на.

Разработанное приложение можно использовать как в учебных целях,
так и в целях рендеринга простых изображений водной среды. Реализован-
ную систему файлов можно интегрировать в существующие DirectX приложе-
ния, в которых требуется рендеринг водной поверхности хорошего качества.

13

	ВВЕДЕНИЕ
	Методы моделирования водной поверхности
	Необходимые математические обозначения
	Существующие алгоритмы моделирования водной поверхности
	Аппроксимация суммой синусов
	Волны Герстнера
	Статистический алгоритм

	Реализация приложения
	Используемые инструменты и технологии
	Реализация модели поверхности
	Быстрое преобразование Фурье

	ЗАКЛЮЧЕНИЕ

