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Введение. 

В настоящее время всё большое внимание уделяется метаповерхностям 

и плазмон-поляритонам (ПП) вдоль них [1‒ 12], так как структуры с 

поверхностными плазмонами (ПП) имеют обширные сферы для приложений 

Локализованные поверхностные плазмоны и используются как средство 

передачи информации в чипах. Они могут поддерживать частоты в 

терагерцовых диапазонах. Обычно используют метод сшивания. Метод 

сшивания приводит к дисперсионному уравнению (ДУ), при этом возможны 

строгие методы и квазистатическое рассмотрение. Эти методы не позволяют 

нам, учесть ряд эффектов, связанных с наличием 2D периодической 

структуры, шероховатостью поверхности и наличию на ней трехмерной 

структуры. Это нам позволяет делать метод интегральных уравнений (ИУ). 

Метод сшивания можно применять непосредственно, через привлечения 

метода матриц передачи либо метода трансформации импедансов. В какой 

угодно из 2-ух границ конечной структуры возможно поставить два 

граничных условия: вытекания и втекания волны. Для втекающей волны ДУ 

в виде равенства нулю определителя однородной системы прямолинейных 

уравнений, получаемой из нагруженной двухполюсниками матрицы 

передачи. Оно имеет тип равенства входного сопротивления структуры 

волновому сопротивлению граничащей с ней среды, т.е. получается 

приравниванием нулю соответствующего коэффициента отражения R. 

Способ сшивания более удобен для плоскослоистых структур. Направим 

внешнюю нормаль к ним по z. В таком случае систему координат можно 

будет повернуть так, что E-ПП имеет следующие компоненты xE ,  zE , yH , а 

H-ПП соответственно имеет компоненты  xH , zH , yE . Введем 

нормированные импедансы в слоях: iiz

e

i kk 0/ , izi

h

i kk /0 , где 

22

0 xiiiz kkk  ‒  компонента волнового вектора. Требуется определить 

дисперсию xk . Если будет отсутствовать коэффициент отражения при 

падении плоской волны на диэлектрическое полупространство соответствует 
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углу Брюстера [34], при этом в вакууме xk  и 
zk  действительные. Если 

присутствует диссипация, а угол комплексный, то это означает отсутствие 

полного отражения. Условие 0R  означает переход от задачи дифракции к 

задаче о свободных волнах, при этом xk  становится комплексным, что 

характерно для ПП. Для симметричных по z структур ПП обычно 

классифицируют по четности и нечетности поперечных компонент 

относительно z. Относительно продольной компоненты классификация 

противоположная. Для ПП вдоль структур с двумя конечными поперечными 

размерами число компонент равно пяти, и удобна классификация по 

четности-нечетности одной продольной компоненты по двум поперечным 

координатам. Метод сшивания для таких структур встречает трудности, как и 

для поперечно-неоднородных структур. Для сложных структурированных 

поверхностей удобно использовать приближенные импедансные, при этом 

метод сшивания приводит к поверхностным интегральным уравнениям. 

 

Цель данной работы – Целью работы является, изучение теоретических 

методов интегральных уравнений, на примере решения тестовой задачи, 

определение дисперсионной зависимости плазмона вдоль метаповерхности. 

    Составить программу реализующую алгоритм расчета, дисперсионной 

зависимости. 

     С помощью составленной программы получить дисперсионной 

зависимость для поверхностного плазмона. 
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1. Рассмотрение возбуждение диэлектрической пластины. 

    Рассмотрим задачу возбуждения пластины в области 21 zzz  из 

магнитодиэлектрика z , z  плоской волной. В случае волны p-

поляризации пишем для нее zikxikEE zxzx 000000 expzxE , а для волны s-

поляризации соответственно zikxikE zxy 0000 expyE . Здесь компонента 

0kkx действительная, 22

00 xz kkk , и они определяют угол падения , при 

этом cos00 EE x , sin00 EE z . Все фазы отсчитываем от 2zz . Из решения 

задачи о возбуждении получим задачу о свободных волнах, наложив на 

коэффициент отражения условие 0R . Решение задачи ищем в виде 

xikzEzE xzx exp00 zxE , xikzH xy exp0yH  для p-поляризации, и 

xikzHzH xzx exp00 zxH , xikzE xy exp0yE  для s-поляризации. Имеем 

                   zd
zHz

zEzEz
zzGxiki

z

z y

zx

xm

e 2

1
0

00

0

0

0 1

1
exp

y

zx

A

A
.      

(25) 

Находим поля дифракции: 

                              
0

2

0

i

k ee
e

d

AA
E ,      ee

d AH ,                                        (26)  

                              mh

d AE ,      
0

2

0

i

k mm
h

d

AA
H ,                                     (27)         

откуда получаем ИУ: 

           zxzxzx he

d

hehe ,,, ,,

0

, EEE ,  zxzxzx hehehe ,,, ,

0

,

0

, HHH .             (28)   

Эти ИУ можно решать, как относительно полных полей, так и относительно 

полей дифракции. Заметим, что поля дифракции представляются через 

полные поля. Выражая из уравнений Максвелла одно из полей, например, 

EH
1

0i  и подставляя в (28), получаем ИДУ относительно другого 

поля. Можно сформулировать несколько ИДУ относительно полей E и H, 

или только относительно поля E или H и решать их независимо. Упрощение 
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происходит, если у пластины нет магнитных или диэлектрических свойств. 

Пусть 1 . Тогда для 0mA , и для  E-ПП имеем 

      zdzzzGzzEikzEkzikz

z

z

zxxzz

2

1

1/exp 0

2

0000 zxEE ,       (29)    

       zdzzzGzEikzzEizikHzH

z

z

zxxzyy

2

1

1/exp 000 .     (30)    

Можно решать ИУ (29) относительно электрического поля. Выражая из 

уравнения Максвелла электрическое поле  

                       
yx HziE /

1

0
,    

yxz HkE
1

0
                        (31)     

и подставляя его в (30), получим скалярное ИДУ относительно zH y
. 

Указанные уравнения можно преобразовать методом интегрирования по 

частям [29], перенося оператор z/  с экспоненциального ядра на 

компоненты  электрического поля. Тогда получаем ИДУ. Сведение всех 

уравнений к ДУ осуществляется скалярным умножением на некий вектор 

zF  и интегрированием по области 21, zz  [25]. ДУ получается как 

билинейный функционал. Для (29) удобно взять zz EF , а для (44) 

zHz y0yF . Действие оператора z/  в функционалах можно перенести с 

ядра на zF . Во всех случаях возникают две константы, связанные с 

подстановками в точках 1z , 2z . Разложение полей по базисам сводит 

функционалы к соответствующим билинейным или квадратичным формам, 

экстремумы которых приводят к однородной системе линейных 

алгебраических уравнений (СЛАУ). Коэффициент отражения R получаем 

после нахождения решения путем вычисления амплитуды дифрагированного 

поля в точке 2z , а коэффициент прохождения определяется как сумма 

падающего и дифрагированного поля в точке 2z . Полагая 0R , получаем ДУ, 

при этом следует считать xk  комплексным и определять из него. Уравнения 

возбуждения также сводятся к уравнениям для свободных волн при 

отсутствии поля падающей волны. В этом случае равный нулю определитель 

однородной СЛАУ и есть ДУ. В случае 2/21 hzz , constz  имеем 
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однородную пластину, для которой, как нетрудно проверить, 

zkHzH zy cos0  и zkHzH zy sin0  есть решения ИДУ (30), если 

электрическое поле взять из уравнений (31). Вне пластины поле 

удовлетворяет волновому уравнению и условиям излучения. Было показано, 

что решение ИУ удовлетворяет условиям на границе раздела сред. В первом 

случае имеем четный по поперечным компонентам и нечетный по zEx  E-ПП 

(в области 0z  электрическая стенка). Во втором случае плазмон нечетный 

по поперечным компонентам и четный по zEx  (магнитная стенка при 0z ). 

Методом сшивания для них получаются ДУ 

                       
1tanh

tanh
22

22

0kk e

ex   ,     
22

22

0
tanh

tanh
kk e

ox  .                     (32)     

Здесь 2/hikz . В отсутствии диссипации для медленного ПП 1, и угол 

 действительный. Функционал для 2

xk  получаем умножении (30) на zH y  и 

интегрированием: 

                
2/

2/

2/

2/

1

2/

2/

2/

2/

1

2/

2/

2

2

1

1

h

h

h

h

yy

h

h

h

h

yy

h

h

y

x

dzzdzzzGzHzH

dzzdzzG
z

zHzHzdzzH

k .                (33)   

Он требует итерационного решения совместно с ИУ 

                    zdzzzGzHk
z

zHzH

z

z

yxyy

2

1

12 1 ,                          (34)  

которое следует из (30) [25], поскольку в правую часть входит xk . Интеграл 

по z в двойном интеграле числителя (47) преобразуется к виду: 

dz
ik

zzik
zHzf

h

h z

z

y

2/

2/ 0

0

2

exp
, 

где 2/

2/| hz

hzy zHzzGzf . Интеграл по z  в двойном интеграле числителя 

(33) с использованием  свойства zzGzzzGz //  преобразуется к 

виду: 

zdzzzzGzHzdzzzGzHzg

h

h

y

h

h

y

2/

2/

2

2/

2/

11 . 
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Здесь 2/

2/

1 |1 hz

hzy zzzGzHzg . В силу уравнений Максвелла в 

первом интеграле вторую производную можно заменить: yxy HkkH 2

0

2 . 

Тогда функционал (33) можно преобразовать к виду: 

             

.

1

1

1

2/

2/

2/

2/

1

2/

2/

2/

2/

2

2/

2/

2

2/

2/

2/

2/

1

2/

2/

2/

2/2

0

h

h

h

h

yy

h

h

h

h

yy

h

h

yy

h

h

h

h

yy

h

h

h

h

yy

dzzdzzzGzHzH

dzzdzzzzGzHzHdzzHzgzH

dzzdzzGzHzHz

dzzdzzGzHzHz

k

            

(35) 

Он упрощается в случае однородной ДП: 

                           .

1

2/

2/

2/

2/

2/

2/

2

2

0 h

h

h

h

yy

h

h

yy

dzzdzzGzHzH

dzzHzgzH

k                                       (36)  

Классификация ПП в (32) противоположна той, что используется обычно: 

она выполнена по компоненте zEx , где индекс e  означает четность, а o  - 

нечетность. На рис. 1 представлена дисперсия ПП (32) и аналогичные 

результаты, полученные из функционала для однородной и неоднородной 

пластины с симметричной ДП, в которой hzz pp /cos10 . Для четной 

функции zH y
 функция zf  нечетная, а функция zg  четная. Для нечетной 

функции zH y
 функция zf  четная, а функция zg  нечетная. Производная 

ФГ в (47) имеет вид 2/expsgn/ 0 zzikzzzzGz z . При 

вычислении (47) использованы точные моды однородной пластины, в 

которых ДП считалась неоднородной. Например, для нечетной моды 

22

00 cos xy kzkHH , а для четной 22

00 sin xy kzkHH . 

 

2. Определение дисперсионной зависимости. 

Для определение вида дисперсионной зависимости плазмона, вдоль 
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метаповерхности, метаповерхность представляет собой простейший случай, 

когда  неоднородная. Тогда был взят Функционал для: 

              
2/

2/

2/

2/

1

2/

2/

2/

2/

1

2/

2/

2

2

1

1

h

h

h

h

yy

h

h

h

h

yy

h

h

y

x

dzzdzzzGzHzH

dzzdzzG
z

zHzHzdzzH

k .                  

(33) 

Он требует итерационного решения совместно с ИУ 

                        zdzzzGzHk
z

zHzH

z

z

yxyy

2

1

12 1 ,                              

(34) 

поскольку в правую часть входит 
xk . Интеграл по z в двойном интеграле 

числителя (33) преобразуется к виду: 

                                       dz
ik

zzik
zHzf

h

h z

z

y

2/

2/ 0

0

2

exp
, 

Интеграл по z  в двойном интеграле числителя (33) с использованием  

свойства zzGzzzGz //  преобразуется к виду: 

zdzzzzGzHzdzzzGzHzg

h

h

y

h

h

y

2/

2/

2

2/

2/

11 . 

Здесь 2/

2/

1 |1 hz

hzy zzzGzHzg . В силу уравнений Максвелла в 

первом интеграле вторую производную можно заменить: yxy HkkH 2

0

2 . 

Тогда функционал (33) можно преобразовать к виду: 

              

.

1
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2/

1
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2/
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2
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1
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h

h

h
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h

h

h
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dzzdzzzGzHzH

dzzdzzzzGzHzHdzzHzgzH

dzzdzzGzHzHz

dzzdzzGzHzHz

k

          (35) 
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Он упрощается в случае однородной диэлектрическая проницаемость: 

                                                                                     (36)  

Используя метод итерации 

                                             (37) 

 

Таким образом соотношения (37) и (36) решались совместно, то есть kx 

подставлялось в соотношение (37), затем полученное из него  

подставлялось в соотношение (36). Процедура проходила столько раз, пока  

выполнялось условие  , где i — номер итерации, а  - 

точность вычисления kz. 

Для реализации расчёта данной задачи была написана программа, с помощью 

который были получены результаты: 

На основе полученных результатов, был построен график дисперсионной 

зависимости: 
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                   Рис. 3 Результат вычисления дисперсии плазмона на 

метаповерхности для уравнения (35). 

 

Заключение. 

В работе приведены электродинамические тензорные функции Грина, на 

основе которых получены ИУ и ДУ, пригодные для анализа дифракции волн 

и дисперсии ПП. Уравнения пригодны для произвольных конфигурационной 

сложных метаповерхностей. Результаты позволяют получать эффективные 

поверхностные проводимости путем применения метода гомогенизации. 

Метод интегральных уравнений позволяет решить задачи для сложных 

поверхностей. Был получен результат вычисления дисперсии плазмона на 

простой метаповерхности, когда эпсилон неоднородная, если же эпсилон 

будет однородной это может быть дальнейшими исследованиями. 


