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ВВЕДЕНИЕ

Последовательность является одним из основных понятий математики. Она
довольно  часто  используется  в  различных  областях  науки,  самый
распространенный пример  использования  последовательностей  -  это  банковские
расчеты. 

Помимо  этого  можно  встретить  последовательности  в  биологии,  химии,
медицине и других областях наук.

При изучении многих явлений сначала получают некоторые данные, которые
представляют собой последовательность величин,  а  уже после  этого составляют
формулы,  выражающие  определённую  зависимость  между  изучаемыми
величинами. Часто  наиболее  простыми  такими  формулами  являются
рекуррентные соотношения.  Наиболее изученными в школьном курсе являются
арифметическая  и  геометрическая  прогрессии,  являющиеся  частным  случаем
рекуррентных соотношений.

Рекуррентные  соотношения  является  небольшой  частью  дискретной
математики.  В  свою  время  дискретная  математика  играет  большую  роль  в
разработке принципов  работы компьютера,  т.к.  работа  компьютера  представляет
собой выполнение последовательности дискретных шагов, приводящих к решению
поставленной перед компьютером задачи.

 Поэтому данная тема на сегодняшний момент является не менее актуальной.

При  решении  рекуррентных  соотношений,  наиболее  часто  применяются
производящие  функции.  Рекуррентные  соотношения,  в  свою  очередь,  часто
возникают  также  в  дискретной  математике  и  комбинаторике,  поэтому метод
производящих функций  для решения рекуррентных соотношений изучают именно
в рамках этих дисциплин.

Теория графов является одним из разделов дискретной математики, который
исследует  свойства конечных или счетных множеств с  заданными отношениями
между их элементами. Особенностью этой теории является геометрический подход
к изучению объектов.

Впервые  понятие  граф  ввел  в  1936  венгерский  математик  Денеш  Кёниг.
Однако первая работа по теории графов была написано еще 1736 году Леонардом
Эйлером, в который он решил задачу о «Кёнигсбергских мостах» . Суть этой задачи
состоит  в  следующем.   На  рис.1  представлена  схема центральной  части  города
Кёнигсберг (ныне Калининград), которая включает два берега реки, два острова в
ней  и  семь  соединенных  их  мостов.  Требуется  обойти  все  четыре  части  суши,
пройдя по каждому мосту один раз, и вернутся в исходную точку. 



Современная  теория  графов  даёт  исключительно  удобный  аппарат  для
моделирования  структурных  свойств  различных  систем  и  отношений  между
объектами разной природы.  Поэтому она широко используется  в  разнообразных
областях науки, техники и практической деятельности. В частности, теория графов
находит свое применение в информатике и программирование, химии, экономике,
логистике, в коммуникационных и транспортных системах, схемотехнике.

Теория перечисления графов занимается разработкой методов подсчета числа
неизоморфных графов, обладающих тем или иным свойством. Вероятнее всего, эта
теория возникла в 70-х годах девятнадцатого столетия и связана с именем Кэли,

который пытался найти число насыщенных углеводородов 2 2
C H

n n  , содержащих
данное число атомов углерода. Как он обнаружил, эта задача сводится к подсчету
числа  деревьев,  у  которых степень  каждой  вершины равна  либо  четырем,  либо
единице.  Сейчас  многие  задачи  по перечислению  графов  решены  с  помощью
производящих функции.

 



Глава 1. Производящие функции.

В  комбинаторике  производяя щая  фуя нкция  последовательности{an}  —  это
формальный степенной ряд
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Зачастую производящая функция последовательности чисел является рядом
Тейлора  некоторой  аналитической  функции,  что  может  использоваться  для
изучения  свойств  самой  последовательности.  Однако,  в  общем  случае
производящая функция не обязана быть аналитической.

Производящие  функции  дают  возможность  просто  описывать  многие
сложные последовательности в комбинаторике, а иногда помогают найти для них
явные формулы.

Метод производящих функций был разработан Тейлором 1750-х годах.

§ 1.1. Производящие функции и их свойства

Определение1.1. Пусть  0 1 2, , ,...a a a  —  произвольная  (бесконечная)
последовательность  чисел  (целых,  рациональных,  вещественных  или
комплексных). Производящей  функцией  (производящим  рядом) называется  запись
вида
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Замечание1.2. Не  следует  думать,  что  мы  можем  сказать,  чему  равно

значение  производящей  функции  в  точке 0s s  .  Переменная s является

формальной, и ряд  смысла не имеет. Единственное, что мы

можем  сказать  про  функцию ,  это  что  ее  значение  в  нуле  равно .  Если,
однако, производящий ряд является полиномом (т.е. все его коэффициенты кроме
конечного числа равны нулю), то значение этого ряда в любой точке выражается
конечной суммой и поэтому имеет смысл.

Определение1.3. Суммой двух производящих функций

2
0 1 2( ) ...A s a a s a s      и  

2
0 1 2( ) ...B s b b s b s   

называется производящая функция

2
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Произведением производящих функций  и  называется производящая функция

2
0 0 0 1 1 0 0 2 1 1 2 0( ) ( ) ( ) ( ) ...A s B s a b a b a b s a b a b a b s      

Определение.1.4 Пусть
2

0 1 2( ) ...A s a a s a s     и 
2

0 1 2( ) ...B s b b s b s     —  две

производящие функции, причем (0) 0B  . Подстановкой производящей функции  в
функцию  называется производящая функция
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§ 1.2. Элементарные производящие функции

Поскольку неудобно каждый раз записывать производящую функцию в виде
ряда,  то  для  некоторых  часто  встречающихся  функций  введены  сокращенные
записи.

Определение.2.1
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где  — произвольное комплексное число.

Коэффициент  при  в  этой  записи  называется  числом  сочетаний  из  по  и
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§ 1.3. Деление производящих функций

С делением производящих функций дело обстоит сложнее. Так, например, не

существует формального степенного ряда ( )B s , такого, что ( ) 1sB s  .

Утверждение3.1 Пусть ( )A s  — формальный степенной ряд, такой, что (0) 0A � . 

Тогда существует единственный формальный степенной ряд ( )B s , такой, 

что ( ) ( ) 1A s B s  .

Глава 2. Производящие функции нескольких переменных

П.ф. от двух переменных является двух-индексные последовательности. Эти
последовательности записиваются в виде треугольника.

§ 2.1.Треугольник Паскаля

Т.П. показан на рисунке 5,1. Элементы этого треугольник перечисляет пути,
идущие из  его вершины в  соответствующую клетку. Пути имеют вид  ломаных,
состоящих из единичных векторов. Вектора составляются из двух видов: идущих
вправо-вниз и идущих влево вниз.

Треугольник Паскаля состоит из биномиальных коэффициентов.

,
n

C
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Это доказывается индукцией по n. Предполагается, что числа в  n-й строчке

треугольника совпадают с коэффициентами разложения многочлена   (1 )ns . Число
различных путей, ведущих в точку (n + 1, k), равно сумме числа путей, ведущих в

точку  (n,  k  −  1),  и  числа  путей,  ведущих  в  точку  (n,  k),  1, , 1 ,
c c c
n k n k n k

   .

Поэтому  число  1,
c
n k  совпадает  с  коэффициентом  при  

ks  в  многочлене
1(1 )(1 ) (1 )n ns s s     .

П.  ф.-ю  можно  сопоставить  треугольнику  Паскаля  разными  способами.
Например, рассмотрим следующих: 



Рис 5.1. Треугольник Паскаля в пути, которые он перечисляет п. ф.-ю ––
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§ 2.2. Экспоненциальные производящие функции

1.  Поскольку  

!

!( )! !

rpnr nN
n r n r r

 
 ,  то  

(1 )
!0 0

rn n xn r r rx C x p
n n rr r
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Следовательно, если разложить бином Ньютона (1+x)n в ряд Телора-Маклорена в

окрестности точки x=0, то коэффициенты при !

rx

r в этом разложении есть числа r-
перестановок без повторений из n-множества.

 Определение2.1. Функция вида

2 3
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называется экспоненциальной производящей функцией. Экспоненциальные 
производящие функции позволяют находить числа различных перестановок.



§ 2.3. Треугольник Дика

В каждой  i-ой позиции слова Дика разбаланс скобок не может превысить
величину  i,  поэтому  совокупность  значимых  (ненулевых)  узлов  целочисленной
решетки образует треугольную матрицу (см.  рис.  3),  которая более известна как
треугольник  Каталана.  Такая  конструкция  часто  рассматривается  в  связке  с
треугольником  Паскаля  (таблица  биномиальных  коэффициентов),  у  которого
аналогичное уравнение динамики.

Поскольку мы пришли к полученной матрице, отталкиваясь от слов Дика,
через пути Дика и динамику Дика, то логично назвать эту таблицу треугольником
Каталана-Дика, а проще треугольником  Дика.

В дальнейшем будем различать треугольник Дика (бесконечная таблица) и
опорный  треугольник  –  ограниченный  начальный  фрагмент  таблицы,
равнобедренный треугольник с высотой,  равной   n –  фиксированному числу пар
скобок в словах Дика.

На рис.  4 показан фрагмент
треугольника  Дика  –  опорный
треугольник для  n=6. Треугольник
симметричный,  внешняя
восходящая диагональ (единичные
метки)  и  внешняя  нисходящая
диагональ  (метки  1,  6,  20  и  т.д.)
содержат  одинаковое  количество
узлов.  Для  каждого  узла  (i,j)

существует симметричная или зеркальная точка   (2n-I,j) со своим, в общем случае,



иным значением динамики.  Далее  зеркальную пару (или  зеркало)   a и  b  будем

обозначать ~a b .

§ 2.4. Правила построения экспоненциальных производящих функций:

1. Каждому сорту предметов соответствует одна скобка.

2. Каждой скобке сумма !

rx

r .

3.  Если  предмет  данного  сорта  может  не  входить  в  перестановку, то  в  скобке
присутствует единица.

4. Ели предмет данного сорта может входить в перестановку только один раз, то в

скобке присутствует х, если дважды –

2

2!

x

, если трижды – 

3

3!

x

, и т.д.

5. Если допускаются неограниченные повторения, то сумма в скобке бесконечна.

§ 2.5. Многочлены  Бернулли

Определения5.1. Многочлены вида 
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n n n sB x B x n
n sss
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где 
B

s - Бернулли числа. Так, для n=0, 1, 2, 3
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0 1 22 6

3 13 2( )
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B x x x x
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§ 2.6. Числа Эйлера в треугольнике с кратностями

Предложение 6.1. В основании треугольника на рис.  5.8 а) находятся числа
Эйлера.

§ 2.7. Сравнения в последовательностях.

Этот  раздел  посвящен  свойствам  последовательностей  целых  чисел,
приведенных по различным модулям. Рассмотрим, например, последовательность
чисел Эйлера

1, 1, 5, 61, 1385, . . .



Остатки  от  деления  элементов  этой  последовательности  на  4  образуют  новую
последовательность

1, 1, 1, 1, 1, . . .

Можно проверить, что и последующие члены этой последовательности также будут
единицами.

Та же самая последовательность, взятая по модулю 3, выглядит следующим
образом:

1, 1, 2, 1, 2, 1, 2, . . .

Периодичность  последовательности  подсказывает  нам,  что  она  задается
рациональной производящей функцией. Действительно, пусть N — длина периода

последовательности 
a
i , т. е. 

a N a
k k

 
для всех достаточно больших k. Тем самым,

последовательность задается линейным рекуррентным соотношением и, согласно
теореме 2.1, соответствующая производящая функция рациональна.

Глава 3. Перечисление деревьев.

Настоящая  глава  посвящена  некоторым  геометрическим  аспектам
комбинаторики, в том числе наиболее активно развивающимся в по- следние годы.
Эти  задачи  связаны с  графами  и  их  вложениями в  различные  поверхности.  На

протяжении  всей  главы  широко  используется  обозначение  [ ] ( )ks f s  для

коэффициента 
f
k  в производящей функции

2
0 1 2( ) ...f s f f s f s   

§ 3.1. Перечисление помеченных деревьев

Определение 1.1. Графом будем называть тройку { , , }Г V E I , состоящую из
конечного  множества  вершин  V ,  конечного  множества  ребер  E и  отображения
инцидентности  I  :  E  →V ×  V ,  сопоставляющего  каждому  ребру  пару  вершин
(концы ребра),  которые это ребро соединяет. Ребро называется  петлей,  если его
концы  совпадают.  Валентностью  вершины  графа  называется  число  ребер,  для
которых  данная  вершина  является  концом  (при  подсчете  валентности  петля
считается за два ребра).

Определение  1.3. Две  вершины  графа  называются  соседними,  если
существует ребро, которое их соединяет. Граф называется связным, если для любой

пары  ,u v V� его  вершин  существует  последовательность 0 1, ,..., 2kv u v v v V  �

вершин графа,  в  которой вершины  1
v
i   и  

v
i соседние  для  всех  i=1,  2,  .  .  .  ,  k.

Циклом называется последовательность 
, ,...,

0 1
v v v v V

k
 �

 вершин графа, в которой



вершины  1
v
i   и  

v
i  соседние для всех  i  = 1,  2,  .  .  .  ,  k, все вершины  0, 1 1,..., kv v v 

попарно различны и 0 kv v . Деревом называется связный граф без циклов.

Теорема 1.5. Пусть функции h=h(s) (h(0)=0) и g=g(t) связаны между собой
уравнением Лагранжа

) ( ))s s s    

Тогда коэффициент при
ns  в функции h равен

1 1[ ] ) [ ] ( )n n ns s t t
n

  

Применим это уточнение к уравнению (8.1) на функцию T (s). Получим 

11 1 1![ ] ( ) ! [ ] ( 1)!
( 1)!

nnn n nt nT n s T s n t e n n
n n n

     


Таким образом, мы доказали следующий результат.

Теорема 1.6  (Кэли).  Число помеченных корневых деревьев с  n вершинами

равно
1nT n

n


.

Следствие 1.7. Число помеченных деревьев с n вершинами равно  
2nn 
.

§ 3.2. Тождества Абеля

В  этом  разделе  мы  приведем  еще  одно  доказательство  теоремы  Кэли  о
перечислении  помечен0ных  деревьев.  С  этим  доказательством  да  и  вообще  с
перечислением помеченных деревьев, — тесно связано тождество Абеля

11 22( 1)
, , 0

n ji ni j n n
ii j n i j

��   � ��
��                                      (8.3)

которое порождает целую серию различных тождеств:

112 3( 1)( 6)
2, , 0

n ji ni j n n n
ii j n i j

��    � ��
��                                (8.4)

22 4( 1)( 6)
, , 0

n ji ni j n n n
ii j n i j

��    � ��
��                                  (8.5)

§ 3.3. Производящие функции для непомеченных, помеченных, упорядоченных
и циклически упорядоченных объектов.



Мы  видели  выше,  что  некоторые  последовательности  лучше  описываютя
обыкновенными  производящими  функциями,  а  некоторые—экспоненциальными.
Впрочем, бывают и исключения. Так, экспоненциальная производящая функция для
числа пилообразных перестановок имеет вид тангенса или секанса (в зависимости
от  четности  числа  элементов  в  перестановке,  раздел  5.4),  а  соответствующие
обыкновенные производящие функции имеют замечательное представление в виде
непрерывных дробей (раздел 5.6).

Однако общее правило гласит, что экспоненциальные производящие функции
хорошо  описывают  помеченные  объекты,  тогда  как  непомеченным  лучше
сопоставлять обыкновенные производящие функции. Объяснение этому состоит в
следующем  наблюдении.  Пусть  у  нас  имеется  какой-то  класс  объектов,  и  мы
рассматриваем  конечные  упорядоченные  последовательности  объектов  этого
класса, а также циклически упорядоченные последовательности таких объектов.

§ 3.4. Перечисление плоских и бинарных деревьев

Очевидно, что всякое дерево можно нарисовать на плоскости так, чтобы его
ребра не имели точек пересечения и самопересечения, отличных от вершин. (При
этом ребра можно изображать даже в виде отрезков прямой, что нам, впрочем, не
понадобится в дальнейшем.)

Рис. 8.5. Различные вложения одного дерева в плоскость

Однако одно  и  то же дерево можно изображать  на  плоскости  по-разному
(см.рис.  8.5).  Формализация  понятия  различных  вложений  в  плоскость  дается
следующим определением.

Определение  4.1.  Два  вложения  дерева  в  плоскость  называются
эквивалентными,  если  существует  гомеоморфизм  плоскости,  сохраняющий  ее
ориентацию  и  переводящий  образ  первого  дерева  в  образ  второго.  Класс
эквивалентности вложений деревьев называется плоским деревом.

Глава 4. Перечисление вложенных графов.

§ 4.1. Вложение графа в поверхность.

Плоские деревья являют собой пример вложения графа в плоскость. Одно и
то же дерево может допускать различные вложения. В то же время, не каждый граф,
как мы увидим ниже, допускает вложение в плоскость. Мы коснемся и вопроса о
вложении графа в произвольную двумерную поверхность.



Не  вдаваясь  в  строгое  определение  двумерной  поверхности,  мы
воспользуемся  классификационной  теоремой  для  таких  поверхностей,
доказываемой в стандартных начальных курсах топологии.

Теорема  1.1.   Всякая  (замкнутая  ориентируемая  двумерная)  поверхность
гомеоморфна сфере, к которой приклеено конечное число ручек.

Описание,  даваемое  этой  теоремой,  мы  и  будем  считать  определением
поверхности.

Определение 1.2. Поверхностью рода g называется двумерная сфера с 
приклеенными к ней g ручками.

§ 4.2. О числе склеек многоугольника

Замкнутые  ориентируемые  поверхности  можно  изготавливать  из
многоугольников,  склеивая  их  стороны  попарно.  Например,  склеивание
противоположных сторон квадрата дает тор (см. рис. 9.12).

Рассмотрим правильный 2n-угольник и разобьем его стороны на пары всеми
возможными способами. Для каждого такого разбиения на пары склеим стороны,
принадлежащие  одной  паре  (с  сохранением  ориентируемости  поверхности).
Получится замкнутая ориентированная поверхность. Нас будет интересовать, при
скольких способах склейки полученная поверхность будет иметь род 0, род 1, . . . ,
род g.

§ 4.3. Доказательство теоремы Харера—Загира

Обратим внимание, во-первых, на последовательность коэффициентов при 

старших степенях многочленов 
T
n . Эта последовательность начинается так: 1, 1, 2, 

5, 14, . . . , и у нас есть основания предположить, что она совпадает с 
последовательностью чисел Каталана.

Лемма 3.1.  Степень многочлена  
T
n  равна  n + 1. Коэффициент при  

1nN 
 в

многочлене 
( )T N

n  равен
c
n  n-му числу Каталана.

ЗАКЛЮЧЕНИЕ

В нашей  работе  рассмотрены задачи  перечисления  различных  объектов  с
помощью  производящих  последовательностей.  Техника  производящих
последовательности  и  вопросы  связные  с  изучением  количество  различных
объектов  в  математике  изучается  достаточно  давно.  Но  в  последнее  время  они
нашли важные применения в  алгебраической гуометрии и  ее  приложениях.  Эти
важные и интересные вопрсы подробно рассмотрены в нашей работе
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