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Ââåäåíèå

Ïóñòü Ω - îäíîñâÿçíàÿ îáëàñòü â ïëîñêîñòè w, èìåþùàÿ áîëåå îäíîé

ãðàíè÷íîé òî÷êè, w0 ∈ Ω. Åñëè w0 6= ∞, òî ïî òåîðåìå Ðèìàíà ñóùå-

ñòâóåò åäèíñòâåííàÿ ôóíêöèÿ z = g(w), ðåãóëÿðíàÿ â Ω, íîðìèðîâàííàÿ

óñëîâèÿìè g(w0) = 0, g′(w0) = 1 è îäíîëèñòíî îòîáðàæàþùàÿ Ω íà êðóã

Dr = {z ∈ C : |z| < r}. Ðàäèóñ óêàçàííîãî êðóãà r = r(Ω, w0) íàçûâà-

åòñÿ êîíôîðìíûì ðàäèóñîì îáëàñòè Ω â òî÷êå w0. Ïóñòü òåïåðü ∞ ∈ Ω,

òîãäà ñóùåñòâóåò åäèíñòâåííàÿ ôóíêöèÿ z = g(w), ðåãóëÿðíàÿ â Ω çà èñ-

êëþ÷åíèåì òî÷êè ∞, â îêðåñòíîñòè êîòîðîé îíà èìååò ðàçëîæåíèå âèäà

g(w) = w+c0+c1w
−1+..., è îäíîëèñòíî îòîáðàæàþùàÿ Ω íà îáëàñòü {|z| > 1

r}.
Â ýòîì ñëó÷àå âåëå÷èíà r = r(Ω,∞) íàçûâàåòñÿ êîíôîðìíûì ðàäèóñîì îá-

ëàñòè Ω â òî÷êå ∞. Åñëè w = f(z), f(0) = w0 6= ∞, f ′(0) > 0 êîíôîðìíî

îòîáðàæàåò åäèíè÷íûé êðóã D íà îáëàñòü Ω, òî, êàê íåòðóäíî âèäåòü, êîí-

ôîðìíûé ðàäèóñ r(Ω, w0) = f ′(0). Åñëè æå ∞ ∈ Ω, w = f(z) îäíîëèñòíî

îòîáðàæàåò îáëàñòü D∗ = {|z| > 1} íà Ω è èìååò ðàçëîæåíèå â îêðåñò-

íîñòè áåñêîíå÷íîñòè f(z) = b1z + b0 + b−1z
−1 + ..., òî êîíôîðìíûé ðàäèóñ

r(Ω,∞) = 1
b1
.

Ïóñòü Bl, l = 1, ..., n - ïðîèçâîëüíûå îäíîñâÿçíûå îáëàñòè â ðàñøèðåííîé

êîìïëåêñíîé ïëîñêîñòè C. Áóäåì íàçûâàòü ýòè îáëàñòè íåíàëåãàþùèìè, åñëè

îíè ïîïàðíî íå èìåþò îáùèõ òî÷åê Bl ∩ Bk = ∅, l 6= k. Âïåðâûå çàäà÷åé î

ïðîèçâåäåíèè êîíôîðìíûõ ðàäèóñîâ íåíàëåãàþùèõ îáëàñòåé çàíèìàëñÿ Ì.

À. Ëàâðåíòüåâ [1]. Ðÿä ðåçóëüòàòîâ â çàäà÷å î ïðîèçâåäåíèè ñòåïåíåé êîí-

ôîðìíûõ ðàäèóñîâ íåíàëåãàþùèõ îáëàñòåé ïîëó÷èëè Ï. Ï. Êóôàðåâ [2], Ã.

Ì. Ãîëóçèí [4], Ë. È. Êîëáèíà [5], Í. À. Ëåáåäåâ [6], Íåõàðè [7], Þ. Å. Àëå-

íèöûí [8] è äðóãèå àâòîðû. Áîëüøîå ÷èñëî ðåçóëüòàòîâ â çàäà÷àõ î âçàèìíî

íåíàëåãàþùèõ îáëàñòÿõ ïîëó÷åíî ìåòîäîì ïëîùàäåé. Ìíîãèå çàäà÷è òàêîãî

ðîäà ëèáî íå ïîääàþòñÿ ðåøåíèþ äðóãèìè ìåòîäàìè, ëèáî ðåøåíèÿ èõ ñ ïîìî-

ùüþ ìåòîäà ïëîùàäåé çíà÷èòåëüíî ïðîùå, ÷åì ðåøåíèå äðóãèìè ìåòîäàìè.

Îòìåòèì ñëåäóùèé ðåçóëüòàò [9, ñ. 223]. Ïóñòü B0, B1 - íåíàëåãàþùèå îäíî-

ñâÿçíûå îáëàñòè â ðàñøèðåííîé êîìïëåêñíîé ïëîñêîñòè, ∞ ∈ B0, 0 ∈ B1.

Òîãäà [9, ñ. 223]

r(B0,∞)r(B1, 0) ≤ 1, (1)
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ïðè÷åì ðàâåíñòâî äîñòèãàåòñÿ òîãäà è òîëüêî òîãäà, êîãäà ãðàíèöàìè îáåèõ

îáëàñòåé B0, B1 ñëóæèò îêðóæíîñòü ñ öåíòðîì â íà÷àëå êîîðäèíàò, òî åñòü

B1 - êðóã ñ öåíòðîì â íà÷àëå êîîðäèíàò, à B0 - âíåøíÿÿ ïî îòíîøåíèþ ê

ýòîìó êðóãó îáëàñòü.

Äðóãèì ïîäõîäîì ê ðàññìîòðåíèþ çàäà÷è î ñîîòíîøåíèè êîíôîðìíûõ ðà-

äèóñîâ äâóõ íåíàëåãàþùèõ îáëàñòåé ìîæåò ñëóæèòü ïàðàìåòðè÷åñêèé ìåòîä

Ëåâíåðà-Êóôàðåâà. Óðàâíåíèå Ëåâíåðà âîçíèêëî â ðàáîòå 1923 ã. [10] â ñâÿ-

çè ñ ïîïûòêîé ðåøåíèÿ ïðîáëåìû êîýôôèöèåíòîâ. Óðàâíåíèå Ëåâíåðà îïè-

ñûâàåò äèíàìèêó âîçðàñòàþùåãî îäíîïàðàìåòðè÷åñêîãî ñåìåéñòâà îáëàñòåé,

ïðåäñòàâëÿþùèõ ñîáîé îáëàñòè ñ ðàçðåçîì, äëèíà êîòîðîãî óìåíüøàåòñÿ ñ

ðîñòîì ïàðàìåòðà t. Â ðàáîòàõ Ï. Ï. Êóôàðåâà [11] è Ïîììåðåíêå [12] èäåÿ

Ëåâíåðà áûëà îáîáùåíà íà áîëåå øèðîêèé êëàññ îáëàñòåé.

Ïóñòü Ω(t), 0 ≤ t < T - âîçðàñòàþùåå îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî

îäíîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), Ω(0) = D, ôóíêöèÿ f(z, t) = etz + ... -

ïðè êàæäîì t êîíôîðìíî îòîáðàæàåò åäèíè÷íûé êðóã íà Ω(t). Òîãäà [11,13]

f(z, t) óäîâëåòâîðÿåò ïî÷òè âñþäó óðàâíåíèþ Ëåâíåðà-Êóôàðåâà

∂f(z, t)

∂t
= z

∂f(z, t)

∂z
p(z, t), 0 ≤ t < T, z ∈ D, (2)

ãäå p(z, t) - ôóíêöèÿ èç êëàññà Êàðàòåîäîðè ïðè êàæäîì ôèêñèðîâàííîì

t, 0 ≤ t < T , ÷òî îçíà÷àåò, ÷òî p(z, t) ðåãóëÿðíà â D (ïðè êàæäîì ôèêñèðî-

âàííîì t, 0 ≤ t < T ), p(0, t) = 1, Re p(z, t) > 0, z ∈ D, 0 ≤ t < T .

Åñëè æå òåïåðü Ω(t), 0 ≤ t < T - óáûâàþùåå îäíîïàðàìåòðè÷åñêîå ñåìåé-

ñòâî îäíîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), Ω(0) = D, à ôóíêöèÿ f(z, t) = e−tz+ ...

- ïðè êàæäîì t êîíôîðìíî îòîáðàæàåò åäèíè÷íûé êðóã íà Ω(t), òî f(z, t), òî

f(z, t) óäîâëåòâîðÿåò ïî÷òè âñþäó óðàâíåíèþ

∂f(z, t)

∂t
= −z∂f(z, t)

∂z
p(z, t), 0 ≤ t < T, z ∈ D, (3)

ãäå p(z, t) - ôóíêöèÿ èç êëàññà Êàðàòåîäîðè ïðè êàæäîì ôèêñèðîâàííîì

t, 0 ≤ t < T .

Â ðàáîòå [14] ïîêàçàíî, ÷òî åñëè â (3) óïðàâëÿþùàÿ ôóíêöèÿ p(·, t) ∈
C2(D), 0 ≤ t < T , p(z, ·) íåïðåðûâíà íà [0, T ) äëÿ ëþáîãî z ∈ D, p(z, t), p′(z, t)
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è p′′(z, t) îãðàíè÷åíû íà D× [0, T ), òî äëÿ êîíôîðìíîãî ðàäèóñà r(Ω∗(0),∞)

ñåìåéñòâà îáëàñòåé Ω∗(t) = C\Ω(t) èìååò ìåñòî àñèìïòîòè÷åñêîå ñîîòíîøå-

íèå

ln(r(Ω∗(0),∞)) = t+ o(t), t→ +0. (4)

Çàìåòèì, ÷òî êîíôîðìíûé ðàäèóñ îáëàñòè Ω(t), r(Ω(t), 0) = e−t, òàêèì îáðà-

çîì, (4) ñâÿçûâàåò êîíôîðìíûå ðàäèóñû ñåìåéñòâ îáëàñòåé Ω(t) è Ω∗(t).

Ïóñòü Ω(t), 0 ≤ t < T - ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî îäíî-

ñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), Ω(0) = D, îãðàíè÷åííûõ çàìêíóòûìè æîðäàíî-

âûìè êðèâûìè Γ(t), êîòîðûå çàäàíû â ïîëÿðíûõ êîîðäèíàòàõ (r, ψ) óðàâíå-

íèåì r = γ(ψ, t). Ïóñòü Ω∗(t) - íåîãðàíè÷åííàÿ êîìïîíåíòà C\Γ(t) èG(t) - ìî-

íîòîííîå îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî îäíîñâÿçíûõ îáëàñòåé ãðàíèöû êî-

òîðûõ çàäàíû â ïîëÿðíûõ êîîðäèíàòàõ óðàâíåíèåì r = γ∗(ψ, t) = (γ(ψ, t))−1.

Ìîæíî ïîêàçàòü, ÷òî êîíôîðìíûé ðàäèóñ r(Ω∗(t),∞) = r(G(t), 0). Òàêèì îá-

ðàçîì, âìåñòî ñåìåéñòâà îáëàñòåé Ω∗(t) ìîæíî ðàññìàòðèâàòü ñåìåéñòâî G(t).

Â ðàáîòå ðàññìàòðèâàþòñÿ ìîíîòîííûå îäíîïàðàìåòðè÷åñêèå ñåìåéñòâà

îáëàñòåé Ω(t) è G(t), çàäàííûå êàê îïèñàíî âûøå. Îñíîâíûì ðåçóëüòàòîì

ðàáîòû ÿâëÿåòñÿ àñèìïòîòè÷åñêîå ñîîòíîøåíèå, ñâÿçûâàþùåå êîíôîðìíûå

ðàäèóñû r(Ω∗(t),∞) è r(Ω(t), 0) ñåìåéñòâ îáëàñòåé Ω∗(t) è Ω(t) (òåîðåìà 2.4

è ñëåäñòâèå èç íåå)

log r(Ω∗(t),∞) = ct+

 1

2π

2π∫
0

(δ̇(ϕ, 0))2 − δ̈(ϕ, 0) dϕ

 t2 + o(t2), t→ +0, (5)

ãäå c = 1, åñëè Ω(t) - óáûâàþùåå ñåìåéñòâî îáëàñòåé, c = −1, åñëè Ω(t)

- âîçðàñòàþùåå ñåìåéñòâî îáëàñòåé. Ñîîòíîøåíèå (12), òàêèì îáðàçîì, ïðî-

äîëæàåò àñèìïòîòèêó (4).

Â �1 èçëîæåíû íåêîòîðûå ðåçóëüòàòû, ñâÿçàííûå ñ ïðèìåíåíèåì ïðèíöè-

ïà ïëîùàäåé ê çàäà÷àì î íåíàëåãàþùèõ îáëàñòÿõ è, â ÷àñòíîñòè, ïðèâåäåí-

íîå âûøå óòâåðæäåíèå î ïðîèçâåäåíèè êîíôîðìíûõ ðàäèóñîâ íåíàëåãàþùèõ

îáëàñòåé ÿâëÿåòñÿ ñëåäñòâèåì òåîðåìû 1.2. Îñíîâíûå ðåçóëüòàòû ðàáîòû èç-

ëîæåíû â �2.
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Îñíîâíîå ñîäåðæàíèå ðàáîòû

Ïóñòü Ω(t), 0 ≤ t < T - ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî îä-

íîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), Ω(0) = D, ôóíêöèÿ f(z, t) = a(t)z + ... - ïðè

êàæäîì t êîíôîðìíî îòîáðàæàåò åäèíè÷íûé êðóã D íà Ω(t), ãäå a(t) - ïîëî-

æèòåëüíàÿ íåïðåðûâíàÿ ôóíêöèÿ. Òîãäà [11, 13] f(z, t) óäîâëåòâîðÿåò ïî÷òè

âñþäó óðàâíåíèþ

∂f(z, t)

∂t
= z

∂f(z, t)

∂z
q(z, t), 0 ≤ t < T, z ∈ D, (6)

ãäå q(z, t) ðåãóëÿðíà â D ïðè êàæäîì ôèêñèðîâàííîì t, 0 ≤ t < T . Òåîðåìà

2.2 äàåò ïðè íåêîòîðûõ äîïîëíèòåëüíûõ óñëîâèÿõ èíòåãðàëüíîå ïðåäñòàâëå-

íèå ôóíêöèè q(z, t).

Òåîðåìà 2.2. Ïóñòü Ω(t), 0 ≤ t < T - ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå

ñåìåéñòâî îäíîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), 0 ≤ t < T, Ω(0) = D, îãðà-

íè÷åííûõ êðèâûìè Γ(t), çàäàííûìè â ïîëÿðíûõ êîîðäèíàòàõ (r, ψ) óðàâ-

íåíèåì r = γ(ψ, t) = 1 + δ(ψ, t), 0 ≤ ψ ≤ 2π, 0 ≤ t < T , ãäå δ ∈
C3+α([0, 2π] × [0, T )), 0 < α < 1. Ôóíêöèÿ f(z, t) = a(t)z + ..., a(t) > 0 -

êîíôîðìíî îòîáðàæàåò åäèíè÷íûé êðóã D íà Ω(t). Òîãäà ḟ(z, t) ñóùåñòâóåò

äëÿ âñåõ 0 ≤ t < T, z ∈ D è f(z, t) óäîâëåòâîðÿåò óðàâíåíèþ (6), ïðè÷åì

q(z, t) =
1

2π

2π∫
0

1

|f ′(eiϕ, t)|
δ̇(ψ(ϕ, t), t) cos(β(ψ(ϕ, t), t))

eiϕ + z

eiϕ − z
dϕ,

z ∈ D, 0 ≤ t < T, (7)

ãäå ψ(ϕ, t) = arg f(eiϕ, t), β(ψ, t) = − arctan(γ
′(ψ,t)
γ(ψ,t) ) - óãîë ìåæäó íîðìàëüþ ê

Γ(t) â òî÷êå γ(ψ, t) è ðàäèàëüíûì âåêòîðîì, ïðîõîäÿùèì ÷åðåç ýòó òî÷êó.

Çàìåòèì, ÷òî ôóíêöèÿ q(z, t) íå ïðèíàäëåæèò, âîîáùå ãîâîðÿ, êëàññó Êà-

ðàòåîäîðè (â ñëó÷àå êîãäà Ω(t) - âîçðàñòàþùåå ñåìåéñòâî îáëàñòåé q(z, t)

áóäåò ïðèíàäëåæàòü êëàññó Êàðàòåîäîðè åñëè a(t) = et, â ñëó÷àå êîãäà Ω(t)

- óáûâàþùåå ñåìåéñòâî îáëàñòåé −q(z, t) áóäåò ïðèíàäëåæàòü êëàññó Êàðà-

òåîäîðè åñëè a(t) = e−t).
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Ñëåäóþùàÿ òåîðåìà äàåò äèôôåðåíöèàëüíîå óðàâíåíèå äëÿ êîíôîðìíîãî

ðàäèóñà ìîíîòîííîãî ñåìåéñòâà îäíîñâÿçíûõ îáëàñòåé.

Òåîðåìà 2.3. Ïóñòü f(z, t) = a1(t)z + ..., z ∈ D, 0 ≤ t < T, a1(t) > 0. Ïóñòü

f(z, t) äèôôåðåíöèðóåìà ïî t íà D× [0, T ) è óäîâëåòâîðÿåò óðàâíåíèþ

∂f(z, t)

∂t
= z

∂f(z, t)

∂z
q(z, t), z ∈ D, 0 ≤ t < T, (6)

ãäå q(z, t), ∂f(z,t)∂z - íåïðåðûâíû íà D × [0, T ). Tîãäà a1(t) äèôôåðåíöèðóåìà

è óäîâëåòâîðÿåò óðàâíåíèþ

d

dt
log a1(t) = q(0, t), 0 ≤ t < T. (8)

Òåîðåìà 2.4. Ïóñòü Ω(t), 0 ≤ t < T - ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå

ñåìåéñòâî îäíîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), 0 ≤ t < T, Ω(0) = D, îãðà-

íè÷åííûõ êðèâûìè Γ(t), çàäàííûìè â ïîëÿðíûõ êîîðäèíàòàõ (r, ψ) óðàâ-

íåíèåì r = γ(ψ, t) = 1 + δ(ψ, t), 0 ≤ ψ ≤ 2π, 0 ≤ t < T , ãäå δ ∈
C3+α([0, 2π] × [0, T )), 0 < α < 1. Ïðè ýòîì, ïóñòü êîíôîðìíûé ðàäèóñ

r(Ω(t), 0) = et, åñëè Ω(t) - âîçðàñòàþùåå ñåìåéñòâî îáëàñòåé è r(Ω(t), 0) = e−t,

åñëè Ω(t) - óáûâàþùåå ñåìåéñòâî îáëàñòåé. Ïóñòü G(t) - ñåìåéñòâî îáëà-

ñòåé, îãðàíè÷åííûõ êðèâûìè, çàäàííûìè â ïîëÿðíûõ êîîðäèíàòàõ óðàâíå-

íèåì r = γ∗(ψ, t) = (γ(ψ, t))−1. Òîãäà ñïðàâåäëèâà ôîðìóëà

log r(G(t), 0) = ct+

 1

2π

2π∫
0

(δ̇(ϕ, 0))2 − δ̈(ϕ, 0) dϕ

 t2 + o(t2), t→ +0, (9)

ãäå r(G(t), 0) - êîíôîðìíûé ðàäèóñ îáëàñòè G(t), c = 1, åñëè Ω(t) - óáûâàþ-

ùåå ñåìåéñòâî, c = −1, åñëè Ω(t) - âîçðàñòàþùåå ñåìåéñòâî.

Äîêàçàòåëüñòâà òåîðåìû 2.4 îñíîâàíî íà èñïîëüçîâàíèè óðàâíåíèå (8) äëÿ

êîíôîðìíîãî ðàäèóñà ñåìåéñòâà îáëàñòåé r(G(t), 0) è ñëåäóþùèõ ðàâåíñòâàõ,
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ïîëó÷åííûõ ñ ïîìîùüþ ôîðìóëû (7)

q(z, 0) = −Q(z, 0) =
1

2π

2π∫
0

δ̇(ϕ, 0)
eiϕ + z

eiϕ − z
dϕ, z ∈ D, (10)

∂Q(z, 0)

∂t
− ∂q(z, 0)

∂t
=

1

π

2π∫
0

(δ̇(ϕ, 0))2 − δ̈(ϕ, 0)
eiϕ + z

eiϕ − z
dϕ, z ∈ D, (11)

ãäå q(z, t), Q(z, t) - óïðàâëÿþùèå ôóíêöèè äëÿ ñåìåéñòâ Ω(t) è G(t) ñîîòâåò-

ñòâåííî.

Ïóñòü Γ - çàìêíóòàÿ æîðäàíîâàÿ êðèâàÿ, çàäàííàÿ â ïîëÿðíûõ êîîðäèíà-

òàõ (r, ψ) óðàâíåíèåì r = γ(ψ), 0 ≤ ψ ≤ 2π, Ω∗ - íåîãðàíè÷åííàÿ êîìïîíåíòà

äîïîëíåíèÿ C\Γ. Òîãäà r(Ω∗,∞) = r(G, 0), ãäå G - îáëàñòü îãðàíè÷åííàÿ

çàìêíóòîé æîðäàíîâîé êðèâîé Γ1, çàäàííîé â ïîëÿðíûõ êîîðäèíàòàõ óðàâ-

íåíèåì r = 1
γ(ψ) . Äåéñòâèòåëüíî, ïóñòü w = F (z) îäíîëèñòíî îòîáðàæàåò

îáëàñòü D∗ = {|z| > 1} íà Ω∗ è èìååò ðàçëîæåíèå â îêðåñòíîñòè áåñêîíå÷íî-

ñòè F (z) = b1z + b0 + b−1z
−1 + ..., b1 > 0. Êîíôîðìíûé ðàäèóñ r(Ω∗,∞) = 1

b1
.

Ôóíêöèÿ h(z) = 1

F (
1
z )

ðåãóëÿðíà â åäèíè÷íîì êðóãå D, êîíôîðìíî îòîáðà-

æàåò D íà îáëàñòü G′ = {z | z ∈ G} è èìååò ðàçëîæåíèå â îêðåñòíîñòè íóëÿ

h(z) = 1
b1
z + .... Ôóíêöèÿ s(z) = h(z) ðåãóëÿðíà â åäèíè÷íîì êðóãå D, êîí-

ôîðìíî îòîáðàæàåò D íà îáëàñòü G è èìååò ðàçëîæåíèå â îêðåñòíîñòè íóëÿ

s(z) = 1
b1
z + ..., òî åñòü r(G, 0) = 1

b1
.

Òàêèì îáðàçîì, ñïðàâåäëèâî ñëåäóùåå ñëåäñòâèå òåîðåìû 2.4.

Ñëåäñòâèå. Ïóñòü Ω(t), 0 ≤ t < T - ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå ñå-

ìåéñòâî îäíîñâÿçíûõ îáëàñòåé, 0 ∈ Ω(t), 0 ≤ t < T, Ω(0) = D, îãðàíè÷åí-

íûõ êðèâûìè Γ(t), çàäàííûìè â ïîëÿðíûõ êîîðäèíàòàõ (r, ψ) óðàâíåíèåì

r = γ(ψ, t) = 1 + δ(ψ, t), 0 ≤ ψ ≤ 2π, 0 ≤ t < T , ãäå δ ∈ C3+α([0, 2π] ×
[0, T )), 0 < α < 1. Ïðè ýòîì, ïóñòü êîíôîðìíûé ðàäèóñ r(Ω(t), 0) = et,

åñëè Ω(t) - âîçðàñòàþùåå ñåìåéñòâî îáëàñòåé è r(Ω(t), 0) = e−t, åñëè Ω(t) -

óáûâàþùåå ñåìåéñòâî îáëàñòåé. Ïóñòü Ω∗(t) - íåîãðàíè÷åííàÿ êîìïîíåíòà äî-

ïîëíåíèÿ C\Γ(t). Òîãäà äëÿ êîíôîðìíîãî ðàäèóñà r(Ω∗(t),∞) îáëàñòè Ω∗(t)
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ñïðàâåäëèâà ôîðìóëà

log r(Ω∗(t),∞) = ct+

 1

2π

2π∫
0

(δ̇(ϕ, 0))2 − δ̈(ϕ, 0) dϕ

 t2 + o(t2), t→ +0, (12)

ãäå c = 1, åñëè Ω(t) - óáûâàþùåå ñåìåéñòâî, c = −1, åñëè Ω(t) - âîçðàñòàþùåå

ñåìåéñòâî.

Çàêëþ÷åíèå

Â ðàáîòå ðàññìîòðåíî ìîíîòîííîå îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî îäíî-

ñâÿçíûõ îáëàñòåé Ω(t), îãðàíè÷åííûõ çàìêíóòûìè æîðäàíîâûìè êðèâûìè

Γ(t), êîòîðûå çàäàíû â ïîëÿðíûõ êîîðäèíàòàõ (r, ψ) óðàâíåíèåì r = γ(ψ, t).

Ïîëó÷åíî èíòåãðàëüíîå ïðåäñòàâëåíèå (7) äëÿ óïðàâëÿùåé ôóíêöèè q(z, t)

â óðàâíåíèè (6). Íàðÿäó ñ ñåìåéñòâîì îáëàñòåé Ω(t) ðàññìîòðåíî ñâÿçàííîå

ñ íèì ñåìåéñòâî îáëàñòåé G(t), îãðàíè÷åííûõ êðèâûìè, çàäàííûìè óðàâíå-

íèåì r = γ∗(ψ, t) = (γ(ψ, t))−1. Ñ ïîìîùüþ ïðåäñòàâëåíèÿ (7) óñòàíîâëåíû

ôîðìóëû (10), (11) ñâÿçûâàþùèå çíà÷åíèÿ óïðàâëÿþùèõ ôóíêöèè è èõ ïðî-

èçâîäíûõ ïðè t = 0 äëÿ ñåìåéñòâ Ω(t) è G(t). Íà îñíîâàíèè ýòèõ ôîðìóë

è äèôôåðåíöèàëüíîãî óðàâíåíèÿ (8) äëÿ êîíôîðìíîãî ðàäèóñà ìîíîòîííîãî

ñåìåéñòâà îáëàñòåé, ïîëó÷åíî àñèìïòîòè÷åñêîå ñîîòíîøåíèå (9), ñâÿçûâàþ-

ùåå êîíôîðìíûå ðàäèóñû r(Ω(t), 0) è r(G(t), 0). Ñëåäñòâèåì ýòîãî ñîîòíîøå-

íèÿ è îñíîâíûì ðåçóëüòàòîì ðàáîòû ÿâëÿåòñÿ ñîîòíîøåíèå (12), ñâÿçûâàþ-

ùåå êîíôîðìíûå ðàäèóñû r(Ω(t), 0) è r(Ω∗(t),∞) ñåìåéñòâ îáëàñòåé Ω(t) è

Ω∗(t) = C\Ω(t).
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