

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Получение метода отсечения отрезков . 4

2 Получение метода отсечения многоугольников . 6

3 Входные файлы для тестирования алгоритмов . 7

4 Реализация программы для генерации входных файлов и проведения

тестирования . 8

5 Результаты тестирования . 9

ЗАКЛЮЧЕНИЕ . 12

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 13

ВВЕДЕНИЕ

На данный момент не существует единого универсального подхода к ре-

шению проблемы отсечения отрезков и многоугольников. Широко используе-

мые для отсечения алгоритмы формулируются в терминах вещественнознач-

ных вычислений, а это при реализации требует значительных временных и

емкостных затрат. Но алгоритмов отсечения, сформулированных в целочис-

ленных координатах, на сегодняшний день не представлено, поэтому задача

получения таких алгоритмов остается актуальной.

Из-за своей специфики аппарат однородных координат позволяет нахо-

дить точки пересечения отрезков в целочисленных координатах, при условии,

что исходные координаты также являются целочисленными [1]. Так как боль-

шинство графических систем предполагает целочисленность координат точек,

то представляется разумным применение аппарата однородных координат в

задачах отсечения отрезков прямых и многоугольников.

Цель выпускной квалификационной работы — получить методы отсече-

ния прямых и многоугольников, сформулированные в теминах однородных

координат и провести сравнительный анализ реализованных алгоритмов с из-

вестными алгоритмами отсечения, оперирующими в евклидовом простран-

стве.

Данная работа состоит из двух глав. В первой главе «Алгоритмы компью-

терной графики для отсечения отрезков и многоугольников» излагается пере-

чень областей применения компьютерной графики, раскрывается идея задачи

отсечения, а также приводится описание наиболее популярных алгоритмов от-

сечения отрезков и многоугольников. Во второй главе «Алгоритмы отсечения

линий и многоугольников в однородных координатах» обосновывается приме-

нение аппарата однородных координат в алгоритмах отсечения, описываются

разработанные методы отсечения отрезков и многоугольников в однородных

координатах. Эта глава также включает информацию о входных файлах, кото-

рые были сгенерированы для проведения тестирования алгоритмов. В конце

главы представляются результаты тестирования и сравнительный анализ из-

вестных алгоритмов компьютерной графики (алгоритм Скала [2] и алгоритм

Сазерленда—Ходгмана [2–4]) и разработанных алгоритмов отсечения отрезков

и многоугольников.

3

1 Получение метода отсечения отрезков

За основу разрабатываемого метода отсечения отрезков возьмем алго-

ритм Скала.

Будем предполагать, что все координаты исходных точек в этом методе

заданы в однородных координатах.

Для каждого ребра FiFi+1 области видимости находим коэффициенты

уравнения несущей прямой. Обозначим такую прямую через li. Так как име-

ются однородные координаты точки Fi и однородные координаты точки Fi+1,

то однородные координаты прямой li можно найти через векторное произве-

дение Fi × Fi+1.

Известно, что любая прямая делит пространство на 2 части: положи-

тельную и отрицательную. Многоугольник, относительно которого будет про-

исходить отсечение, является выпуклым, поэтому все остальные его вершины

должны лежать по одну сторону от прямой li. Для всех прямых, ограничива-

ющих многоугольник области видимости, будем выбирать такую полярность,

чтобы все его вершины, не лежащие на этой прямой, находились в положи-

тельном полупространстве. Так, для этого берем вершину Fi+2 и проверяем

скалярное произведение liFi+2. Если оно меньше нуля, то вместо прямой li

берем прямую −li, то есть домножаем все координаты прямой li на −1, таким

образом меняя полярность.

На вход алгоритма подается список отрезков для последующего отсе-

чения. Рассматриваем очередной отрезок AB. Имея однородные координаты

точки A и однородные координаты точки B через векторное произведение

A×B можно вычислить коэффициенты уравнения несущей прямой, которую

обозначим как lab.

Теперь опишем саму идею метода.

Для каждого ребра найдено li, а также вычислено lab. Найдем скалярные

произведения labFi и labFi+1. После этого перемножим их, и если результат их

произведения будет меньше нуля, то скалярные произведения имеют разные

знаки, а это значит, что прямая lab пересекает FiFi+1.

В ходе алгоритма ведется подсчет количества тех ребер многоугольника,

для которых найдется точка пересечения с прямой lab. После того, как мы

узнали, что прямая lab пересекает FiFi+1, счетчик нужно увеличить.

Теперь нужно узнать, пересекает ли отрезок AB ребро FiFi+1.

4

— Если скалярное произведение liA, умноженное на скалярное произведе-

ние liB, будет меньше либо равно нулю, то точки A и B лежат по разные

стороны от прямой li, следовательно, AB перескает FiFi+1. Точку пере-

сечения C будем находить через векторное произведение li × lab. Пусть

[χ, γ, α] — однородные координаты точки C. Если α меньше нуля, нужно

провести нормализацию. Для этого домножаем все координаты точки C

на −1.

Теперь нужно узнать, какой отрезок переходит на следующий этап: AC

или CB. Если скалярное произведение liA меньше нуля, то A лежит на

стороне внешности, вместо нее берем точку C. Тогда на следующий этап

переходит отрезок CB, а иначе отрезок AC.

— Если скалярное произведение liA, умноженное на скалярное произве-

дение liB, окажется больше нуля, то есть эти скалярные произведения

имели один и тот же знак, то нам нужно узнать, чему равняется liA. Ес-

ли это произведение меньше нуля, то отрезок полностью отбрасывается,

если же больше либо равно нулю, то отрезок полностью принимается и

переходит на следующий этап.

Когда нашлись два ребра области видимости, которые пересекаются с

lab, мы делаем выход из алгоритма.

После того, как отрезок принимается, он добавляется в результирующий

список отрезков, который и будет выдан в качестве результата работы

алгоритма.

5

2 Получение метода отсечения многоугольников

За основу разрабатываемого метода возьмем алгоритм Сазерленда—Ходг-

мана.

Находим коэффициенты уравнения несущей прямой для каждого ребра

области видимости FiFi+1 через векторное произведение Fi×Fi+1. Обозначим

такую прямую через li.

Многоугольник отсечения является выпуклым, поэтому все остальные

его вершины должны лежать по положительную сторону от прямой li. Для

этого делаем проверку: берем вершину Fi+2 и находим скалярное произведение

liFi+2, и если оно меньше нуля, то вместо прямой li берем прямую −li, то есть

домножаем все координаты прямой li на −1, таким образом меняя полярность.

На вход алгоритма подается список многоугольников. Берем очередной

многоугольник из этого списка. Берем очередную пару вершин Vj и Vj+1, где

j = 1, ...,M−1, M — количество вершин текущего отсекаемого многоугольни-

ка. Обозначим несущую прямую, на которой лежит отрезок VjVj+1 через lvjvj+1
.

Найдем коэффициенты уравнения этой прямой через векторное произведение

Vj × Vj+1.

Теперь рассмотрим сам алгоритм. Для определения расположения точек

Vj и Vj+1 относительно области видимости находим скалярные произведения

liVj и liVj+1. Обозначим такие произведения через Q1 и Q2 соответственно.

ПеремножимQ1 иQ2. Если полученное произведение меньше нуля, значит эти

скалярные произведения имели разные знаки, а это значит, что есть точка пере-

сечения. Точку пересечения C будем находить через векторное произведение

li × lvjvj+1
. Пусть [χ, γ, α] — однородные координаты точки C. Если α меньше

нуля, нужно провести нормализацию. Для этого домножаем все координаты

точки C на −1. После этого точка C добавляется в новый многоугольник —

результат отсечения.

Если Q2 > 0, то поворот от FiFi+1 к FiVj+1 осуществляется по часовой

стрелке, следовательно, точка Vj+1 находится внутри области видимости. Если

Q2 = 0 — точка Vj+1 находится на несущей прямой i-ого ребра. В этих случаях

точка Vj+1 будет принята, иначе — будет отброшена.

Полученный после отсечения новый многоугольник добавляется в ре-

зультирующий список многоугольников, который будет выдан в качестве ре-

зультата работы алгоритма.

6

3 Входные файлы для тестирования алгоритмов

Для проведения тестирования и сравнения стандартного алгоритма Ска-

ла отсечения отрезков и модифицированного требуется подготовить файлы со

случайными отрезками в следующих вариантах:

1. файлы с разным количеством объектов (100, 200, ..., 1000, 5000, ...,

30000);

2. файлы с различным разбросом, но с фиксированным количеством объ-

ектов. Возможны следующие случаи расположения:

— большое количество объектов внутри области видимости, малое

количество — вне области и малое — на границе;

— большое количество объектов вне области видимости, малое — внут-

ри и на границе области;

— большое количество объектов на границе области видимости, малое

количество — вне и внутри области.

Для тестирования и сравнения стандартного алгоритма Сазерленда—

Ходгмана отсечения многоугольников и модифицированного требуется сгене-

рировать файлы с произвольными многоугольниками. Генерация файлов долж-

на быть произведена следующим образом:

1. файлы с разным количеством многоугольников (100, 200, ..., 1000, 5000,

..., 30000), но все многоугольники с одинаковым числом вершин.

2. файлы с многоугольниками различного вида (треугольниками, четырех-

угольниками, ..., восьмиугольниками), но с фиксированным количеством.

3. файлы с различным разбросом, но с фиксированным числом объектов,

причем все объекты с одинаковым количеством вершин. Были учтены

следующие варианты расположения многоугольников относительно об-

ласти видимости:

— большое количество объектов внутри области видимости, малое

количество — вне области и малое — на границе;

— большое количество объектов вне области видимости, малое — внут-

ри и на границе области;

— большое количество объектов на границе области видимости, малое

количество — вне и внутри области.

7

4 Реализация программы для генерации входных файлов и

проведения тестирования

В рамках настоящей работы была реализована программа в приложении

Windows.Forms [5] на языке C++ в среде Microsoft VisualStudio, с помощью

которой были получены все необходимые входные данные, проведено тестиро-

вание алгоритмов на скорость работы и произведено сравнение по результатам

данного тестирования.

Структура файла с полученными случайными координатами отрезков

выглядит следующим образом:

1 -494 77 116 -342

2 -319 249 -373 -139

3 -463 -169 241 191

4 -504 443 100 -341

5

В каждой строке располагаются четыре координаты, первые две — коор-

динаты начала отрезка, последние две — координаты конца.

Формат файла с полученными координатами многоугольников выглядит

следующим образом:

1 # îòñåêàåìûå ìíîãîóãîëüíèêè

2 polygon 3 627 -433 474 -87 -568 -29

3 polygon 3 68 291 161 322 -347 417

4 polygon 3 23 165 -417 438 -609 -541

5 polygon 3 540 -147 -180 -309 -422 344

6

Сначала идет слово polygon, после него указано число, обозначающее

количество вершин многоугольника, каждая пара следующих чисел — это ко-

ординаты i-ой вершины многоугольника в порядке обхода вершин по часовой

стрелке.

Для проведения теста на скорость была добавлена кнопка «Test». При ее

нажатии происходит вызов функции тестирования (выполняются различные

манипуляции с изображением: поворот, масштабирование, смещение и т.д.) и

вычисляется время работы в секундах.

8

5 Результаты тестирования

В таблице 1 приведены результаты измерения скорости выполнения мо-

дифицированного в однородных координатах алгорима отсечения отрезков и

алгоритма Скала в зависимости от количества отрезков.

Таблица 1 – Сравнение скорости работы алгоритмов в зависимости от объема входных дан-
ных

Количество
объектов

Алгоритм отсечения отрезков
в однородных координатах (с)

Алгоритм Скала (с)

100 0.1090824082 0.0784217588

200 0.2191478079 0.1542465189

300 0.3145579294 0.2306988894

500 0.5011984872 0.3790328314

700 0.7295461979 0.5215555897

1000 1.0126833083 0.7485274038

5000 5.2865688236 3.7109803303

10000 10.4041376112 7.5135801835

20000 20.3904143123 14.3699259698

30000 30.4026203604 22.4954319023

В таблице 2 показаны результаты теста на скорость для модифициро-

ванного в однородных координатах алгоритма отсечения отрезков и алгоритма

Скала в зависимости от положения объектов по отношению к области видимо-

сти. Количество объектов для каждого случая расположения фиксированное.

Таблица 2 – Сравнение скорости работы алгоритмов в зависимости от разброса объектов
относительно области видимости

Расположение объектов Алгоритм отсечения
отрезков в однород-
ных координатах (с)

Алгоритм Скала (с)

Áîëüøèíñòâî âíóòðè 0.4798681883 0.3421847262

Áîëüøèíñòâî ñíàðóæè 0.3491518315 0.2676950713

Áîëüøèíñòâî íà ãðàíèöå 0.4048436849 0.2920872281

В таблице 3 приведены результаты измерения скорости для модифици-

рованного в однородных координатах алгорима отсечения многоугольников и

алгоритма Сазерленда—Ходгмана в зависимости от количества многоугольни-

ков.

9

Таблица 3 – Сравнение скорости работы алгоритмов в зависимости от объема входных дан-
ных

Количество
объектов

Алгоритм отсечения много-
угольников в однородных ко-
ординатах (с)

Алгоритм Сазерленда—Ходг-
мана (с)

100 0.6035441705 0.3159855853

200 0.9915170796 0.6145738184

300 1.4992331124 0.9159397813

500 2.3123314878 1.5147858356

700 4.2208070337 2.1005305531

1000 6.4168028045 3.0366197334

5000 31.5481865403 15.9043921018

10000 63.8274154279 32.2366874475

20000 100.9731804108 67.4597061859

30000 198.7953923691 100.7255110244

В таблице 4 представлены результаты тестирования на скорость модифи-

цированного в однородных координатах алгорима отсечения многоугольников

и алгоритма Сазерленда—Ходгмана в зависимости от числа вершин отсекае-

мых многоугольников. Количество объектов в данном случае фиксированное.

Таблица 4 – Сравнение скорости работы алгоритмов в зависимости от вида многоугольников

Вид многоугольников Алгоритм
отсечения мно-
гоугольников
в однородных
координатах (с)

Алгоритм Са-
зерленда—
Ходгмана (с)

Òðåóãîëüíèêè 0.6135387979 0.3685853246

×åòûðåõóãîëüíèêè 0.7481679809 0.4781791854

Ïÿòèóãîëüíèêè 1.0496690101 0.6088161338

Øåñòèóãîëüíèêè 1.1142174849 0.6519634172

Ñåìèóãîëüíèêè 1.2605223425 0.7661390214

Âîñüìèóãîëüíèêè 1.4464939282 0.8644462691

В таблице 5 показаны результаты теста для модифицированного алгорит-

ма отсечения многоугольников и стандартного алгоритма Сазерленда—Ходгма-

на в зависимости от положения объектов по отношению к области видимости.

Количество объектов для каждого случая расположения неизменное.

10

Таблица 5 – Сравнение скорости работы алгоритмов в зависимости от разброса объектов
относительно области видимости

Расположение объектов Алгоритм отсечения
многоугольников в
однородных коорди-
натах (с)

Алгоритм Сазерлен-
да—Ходгмана (с)

Áîëüøèíñòâî âíóòðè 2.0872851702 1.3447997245

Áîëüøèíñòâî ñíàðóæè 0.8531331033 0.6277790892

Áîëüøèíñòâî íà ãðàíèöå 1.6180335038 0.9269031311

Результаты, показанные в таблицах, демонстрируют, что в приведенной

реализации время работы алгоритмов, оперирующих в однородных координа-

тах, несколько больше оригинальных алгоритмов (Скала и Сазерленда—Ходг-

мана). Это может обуславливаться тем, что в качестве целого типа данных для

координат был выбран тип __int64. Этот тип данных был выбран из-за того,

что в результате операций векторного и скалярного произведения, регулярно

использующихся в разработанных методах, отдельные координаты могут вы-

рождаться в достаточно огромные величины. Использование целочисленных

типов данных меньшей размерности приводило к некорректным результатам

из-за переполнения.

11

ЗАКЛЮЧЕНИЕ

Тематика, затронутая в проекте, актуальна, поскольку широко применя-

емые алгоритмы отсечения работают с вещественнозначными вычислениями,

которые требуют дополнительных затрат памяти и времени. В связи с этим яв-

ляется целесообразным выполнение операций в целочисленных координатах.

В ходе дипломной работы были выполнены все поставленные задачи.

Для проведения тестирования быстродействия алгоритмов отсечения отрез-

ков и многоугольников были получены все необходимые входные данные,

реализован тест скорости, что позволило произвести сравнение стандартных

алгоритмов компьютерной графики и алгоритмов, модифицированных путем

применения аппарата однородных координат.

Результаты показали, что в приведенной реализации алгоритмы, опе-

рирующие в однородных координатах, работают медленнее стандартных. Это

может обуславливаться тем, что они требуют операций с достаточно большими

целыми числами, а это в некоторых случаях может привести к переполнению.

При этом операции для работы с длинной арифметикой зачастую не являются

более эффективными, чем операции с вещественными числами.

Настоящая тема заслуживает дальнейшего исследования, так как в целом

отрицательные показатели для разработанных методов могут быть результатом

выбора архитектуры для реализации. Желательно было бы повторить экспе-

рименты на другой архитектуре для получения достоверного заключения.

Кроме того, стоит исследовать процедуры самих разработанных методов

на предмет реорганизации операций, с целью уменьшения накопления величин

и обход операций с длинной арифметикой.

12

