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Введение. Неравенства, с помощью которых оцениваются нормы про-

межуточных производных функций одной и многих переменных через нормы

самих функций и нормы производных более высокого порядка, играют важ-

ную роль во многих областях математики и ее приложений. Особенно важны

неулучшаемые неравенства такого типа, то есть неравенства с наилучшей кон-

стантой. Для функций одной переменной наиболее ярким результатом и по-

ныне остается неравенство Колмогорова, которое он получил в 1939 г. В этой

связи неравенства для промежуточных производных часто называют нера-

венствами типа Колмогорова. К настоящему времени известно значительное

количество точных неравенств типа Колмогорова для функций одной перемен-

ной.

Задача нахождения наилучшей константы в неравенстве типа Колмого-

рова в ряде случаев сводится к некоторой экстремальной задаче.

В теории экстремальных задач выделяется несколько достаточно ясно

очерченных подклассов: вариационное исчисление, оптимальное управление,

выпуклое программирование. В работе с достаточно общих позиций рассмат-

риваются методы решения задач, принадлежащих лишь двум первым под-

классам. На их основе найдены наилучшие константы для соответствующих

неравенств типа Колмогорова.

Так, например, в первом разделе данной работы рассматривается один

частный случай неравенства колмогоровского типа — неравенство Адамара.

Задача нахождения наилучшей константы в данном неравенстве решается дву-

мя способами. Первый способ заключается в сведении неравенства Адамара к

неравенству в аддитивной форме и доказательстве его справедливости. Второй

— в сведении неравенства к задаче вариационного исчисления и ее последую-

щего решения.

Во втором разделе данной работы исследуются методы решения опти-

мальных задач. На их основе решается несколько различных задач оптималь-

ного управления.
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В третьем разделе приводятся некоторые сведения о точном неравенстве

колмогоровского типа. В основе его лежит теорема, которая устанавливает

связь наилучшей константы с наименьшим собственным значением некоторой

вспомогательной матрицы. Для доказательства теоремы приведены вспомога-

тельные предложения. Применение данной теоремы позволяет получить оцен-

ку константы в неравенстве типа Колмогорова. Кроме того, в данном разделе

изложен метод интегральных представлений, благодаря чему появляется воз-

можность для изучения функциональных пространств функций, заданных на

множестве достаточно общего вида.

Итак, основными целями работы являются:

1) получение точной константы в неравенстве Адамара;

2) изучение методов оптимального управления и вариационного исчис-

ления, решение конкретных задач с их использованием;

3) получение более общих сведений о наилучшей константе, их приме-

нение.

Основное содержание работы. Пусть I либо полупрямая R+, либо вся

прямая R; W n
pr(I) – пространство всех функций x ∈ Lp(I), которые имеют

локально абсолютно непрерывные производные x(n−1) на I и таких, что x(n) ∈

Lr(I); n ∈ N, 1 ≤ p, q, r ≤ ∞, k ∈ Z, 0 ≤ k < n. Рассмотрим следующее

семейство экстремальных задач, определенных на W n
pr(I):

f0(x) = ‖x(k)‖Lq(I) → sup,

f1(x) = ‖x‖Lp(I) ≤ 1,

f2(x) = ‖x(n)‖Lr(I) ≤ 1 (1.1)

Задачу (1.1) будем называть общей задачей о неравенствах для производ-

ных. При некотором соотношении между k, n, p, q и r возможны неравенства
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вида:

‖x(k)‖Lq(I) ≤ K‖x‖αLp(I)
‖x(n)‖βLr(I)

(1.2)

Неравенство (1.2) с наилучшей константой будем называть точным. За-

дачу о нахождении наилучшей константы в неравенстве (1.2) будем называть

задачей о неравенстве типа Колмогорова. Решение этой задачи назовем кон-

стантой Колмогорова.

Рассмотрим неравенство

‖ẋ‖L2(R+) ≤ K‖x‖1/2L2(R+)
‖ẍ‖1/2L2(R+)

. (1.5)

Посредством следующих двух теорем докажем, что константа Колмогорова

K =
√

2.

Теорема 1.1. Пусть x ∈ L2(R+), производная ẋ локально абсолютно

непрерывна и ẍ ∈ L2(R+). Тогда неравенства

‖ẋ‖L2(R+) ≤
√

2‖x‖1/2L2(R+)
‖ẍ‖1/2L2(R+)

(1.6)

и

‖ẋ‖2L2(R+)
≤ ‖x‖2L2(R+)

+ ‖ẍ‖2L2(R+)
(1.7)

эквивалентны.

Теорема 1.2. Пусть x ∈ L2(R+), производная ẋ локально абсолютно

непрерывна и ẍ ∈ L2(R+). Тогда справедливо следующее неравенство:

‖ẋ‖2L2(R+)
≤ ‖x‖2L2(R+)

+ ‖ẍ‖2L2(R+)

Теорема 1.3. Пусть x ∈ L2(R), производная ẋ локально абсолютно

4



непрерывна и ẍ ∈ L2(R). Тогда справедливо следующее неравенство:

‖ẋ‖2L2(R) ≤ ‖x‖
2
L2(R) · ‖ẍ‖

2
L2(R) (1.13)

Основной изопериметрической задачей называется следующая экстре-

мальная задача:

J0(x(·)) =

t1∫
t0

f0(t, x(t), ẋ(t), ..., x(n)(t))dt→ extr; (1.15)

Ji(x(·)) =

t1∫
t0

fi(t, x(t), ẋ(t), ..., x(n)(t))dt ≤ 1, i = 1, ...,m; (1.16)

Исследуем теперь неравенство Адамара на полуоси как задачу вариаци-

онного исчисления. Задача о вычислении константы Колмогорова в неравен-

стве (1.5) равносильна нахождению точного значения следующей изоперимет-

рической задачи:

∞∫
0

ẋ2(t)dt→ max,

∞∫
0

[
x2(t) + ẍ2(t)

]
dt ≤ 1 (1.24)

Для решения этой задачи воспользуемся необходимым условием экстре-

мума. В результате получим, что x0(t) = ±
√
3
3 e
− t

2 (sin
√
3
2 t −

√
3 cos

√
3
2 t) - ре-

шение изопериметрической задачи (1.24), а, следовательно, и решение задачи

о нахождении наилучшей константы в (1.5). Подстановка x0(t) в неравенство

даст константу
√

2. Откуда можно сделать вывод, что константа K =
√

2

является наилучшей, а само неравенство точным.
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Задачей оптимального управления называется следующая задача:

t1∫
t0

f0(t, x(t), u(t))dt+ g0(t0, x(t0), t1, x(t1))→ sup (2.1)

ẋ = f(t, x(t)u(t)), u(t) ∈ U, (2.2)

Рассмотрим следующую задачу оптимального управления

T∫
0

ẋ2dt→ sup; |x+ ẍ| = u, |u| ≤ 1

Применяя к рассматриваемой системе принцип максимума Понтрягина, по-

лучаем, что при управлении u = ±1 оптимальные траектории на плоскости

x1, x2 будут состоять из дуг окружностей с центром в (1, 0) радиуса
√
C2

1 + C2
2

при u = 1 и с центром в (−1, 0) того же радиуса при u = −1 .

Рассмотрим задачу оптимального управления:

1∫
−1

|x|sdt→ sup; ẋ = u, |u| ≤ 1

где 1 < s <∞.

Применим к рассматриваемой системе принцип максимума Понтряги-

на, получим, что x есть ломаная с угловыми коэффициентами ±1. При этом

функция x может иметь n равных отрезков постоянства значений производной.

Следовательно оптимальная траектория x0 есть ломаная с угловыми коэффи-

циентами ±1 и изломами в точках −1 +
2

n
k, k = 1, 2, . . . , n− 1.

Рассмотрим задачу оптимального управления:

T∫
0

x2(t)dt→ min; x(0) = 1, ẍ(T ) = 0, ẍ− u = 0, |u| ≤ 1
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Применяя принцип максимум Понтрягина к данной задаче, получим следую-

щую систему

ẋ2 = sgny, ÿ = −x1, y(0) = 0, y(T ) = 0. (2.21)

Решением данной системы на отрезке
[
0, T

]
будут следующие функции

x̃1(t) =
t2

2
− αt+ 1,

ỹ(t) = − t
4

24
+
αt3

6
− t2

2
+

t

2α
.

Заметим, что продолжая подобным образом эти функции на полупрямую

R+, получим пару функций x̃1(t) и ỹ(t), которые удовлетворяют условиям

(2.21) и которые финитны, так как точки склейки x̃1(t) (нули ỹ(t)) сходятся

к T (1 −
√
α2 − 2

α2 + 2
). Таким образом, функция x̃1(t), является еще и решением

аналогичной задачи с интегралом заданным на полуоси. Данная задача при

такой постановке называется задачей Фуллера.

Далее будем рассматривать следующее точное неравенство

‖f (k)‖2 ≤ 1

γn,k

{
‖f‖2 + ‖f (n)‖2

}
,

Бесконечную в обе стороны последовательность действительных чисел{
ωj
}∞
j=−∞ назовем гурвицевой порядка n, если ω0 = ωn = 1, ωj = 0 для

j 6= 0, 1, . . . , n и все корни многочлена

p(λ) = ω0 + ω1λ+ · · ·+ ωnλ
n =

∞∑
j=−∞

λjωj (3.1)

имеют отрицательные действительные части.

Лемма 3.1. Пусть заданы натуральные числа n и k (n = 2, . . . ,∞; k =

1, . . . , n−1). Каково бы ни было действительно число γ ∈ Gnk =
(

0,
n

k
k
n (n− k)

n−k
k

)
,
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существует одна и только одна гурвицева последовательность
{
ωj
}∞
j=−∞ по-

рядка n, обладающая свойством:

∞∑
ν=−∞

(−1)νωj−νωj+ν =


0, для j 6= 0, k, n,

1, для j = 0, n,

−γ, для j = k.

Лемма 3.2. Если f(x) ∈ L2(R+), f(x) абсолютно непрерывна вместе с

f ′(x), f ′′(x), . . . , f (n−1)(x) и f (n) ∈ L2(R+), то

lim
x→∞

f(x) = lim
x→∞

f ′(x) = · · · = lim
x→∞

f (n−1)(x) = 0.

Ниже нам придется иметь дело с конечными наборами чисел ω0, ω1, . . . , ωn.

Договоримся всякий раз считать этот набор продолженным нулями до беско-

нечной в обе стороны последовательности
{
ω̃j
}∞
j=−∞.

По заданному набору чисел ω0, ω1, . . . , ωn можно построить числа:

Γj =
∞∑

ν=−∞
(−1)νωj−νωj+ν; (3.5)

qjs =
∞∑
ν=0

(−1)νωj+νωs−ν−1 при 1 ≤ s ≤ j ≤ n,

qjs = qsj при 1 ≤ j ≤ s ≤ n. (3.6)
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Из чисел qjs образуем симметричную матрицу

Q =


q11q12 . . . q1n

q21q22 . . . q2n

. . . . . . . . . . . . . .

qn1qn2 . . . qnn

 (3.7)

Если задан вектор a =
{
a1, a2, . . . , an

}
, то через Qa будем обозначать вектор

b =
{
b1, b2, . . . , bn

}
, координаты которого задаются формулами bν =

n∑
j=1

qνjaj (ν =

1, 2, . . . , n).

Лемма 3.3. Если f(t) ∈ L2(R+) абсолютно непрерывна вместе с произ-

водными до (n − 1)-ого прорядка на всяком конечном отрезке полуоси R+ и

f (n)(t) ∈ L2(R+), то f ′(x), f ′′(x), . . . , f (n−1)(x) и f (n) ∈ L2(R+) и для любого

набора действительных числе ω0, ω1, . . . , ωn имеет место равенство

∞∫
0

( n∑
j=0

ωjf
(j)(t)

)2
=

n∑
j=0

Γj

∞∫
0

[
f j
]2
dt− (Qf0, f0), (3.8)

где

f0 =
{
f(0), f ′(0), . . . , f (n)(0)

}
.

Положим при n = 2, . . . ,∞ и k = 1, . . . , n− 1

γnk = inf
f∈L(n)

2 (R+)

‖f‖2 + ‖f (n)‖2

‖f (k)‖2
, где ‖ϕ‖ =

√√√√√ ∞∫
0

ϕ2(t)dt. (3.15)

Лемма 3.4. Справедливы неравенства

0 < γnk <
n

k
k
n (n− k)

n−k
k

. (3.16)
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Из определения величины γnk для всякой функции f(t) ∈ W n
22(R+) имеем

‖f (k)‖ ≤ 1

γnk

[
‖f‖2 + ‖f (n)‖2

]
,

причем константа
1

γnk
в этом неравенстве не может быть уменьшена.

Укажем способ отыскания величин γnk. Пусть γ - произвольное число из

интервала Gnk =
(

0,
n

k
k
n (n− k)

n−k
k

)
. Обозначим через ωj(γ) элементы гурви-

цевой последовательности порядка n
{
ωj
}∞
j=−∞, обладающей свойством (1).

Существование этой последовательности гарантировано леммой 3.1. Положим

далее

D(γ) =

∣∣∣∣∣∣∣∣∣∣∣∣

q11 q12 . . . q1n

q21 q22 . . . q2n

. . . . . . . . . . . . . . . .

qn1 qn2 . . . qnn

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.17)

где qjs(γ) = qsj(γ) =
∑∞

ν=1(−1)νωj+ν(γ)ωs−ν−1(γ) при j ≥ s. Теорема 3.1. γnk

является наименьшим положительным корнем уравнения D(γ) = 0.

Следствие 3.1. При всех n = 2, . . . ,∞ и всех k = 1, . . . , n−1 справедливо

равенство γnk = γn,n−k.

Следствие 3.2.

Справедливы следующие утверждения:

а) γ21 = 1;

б) γ31 = γ52 = (3− 2
√

2)1/3;

в) γ41 (а, следовательно, и γ43) является наименьшим положительным

корнем уравнения

γ8 − 6γ4 − 8γ2 + 1 = 0;

г) γ42 является наименьшим положительным корнем уравнения

γ4 − 2γ2 − 4γ + 1 = 0.
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С помощью следующей леммы становится возможным упрощение опре-

делителя D(γ)

Лемма 3.5. Пусть ∆0 = 1,∆1 = ω1,∆s =


ω1ω0 0 . . . 0

ω2ω1 ω0 . . . 0

. . . . . . . . . . . . . . . . . . .

ωsωs−1 ωs−2 . . . 0

 , при

s = 2, . . . ,∞ и ∆s = 0 при s = −∞, . . . ,−1. Тогда

∆j = ωj + γ(−1)k∆j−2k, при j = 0, 2n− 1. (3.20)

∆j = ωj + γ(−1)kωj−2k + γ2ωj−4k + . . . , при j = 0, 1, . . . , 2n− 1, (3.21)

Таким образом, справедливо следующее соотношение

D(γ) =


∆n−k+1∆n−k+2 . . . ∆n

∆n−k+2∆n−k+3 . . . ∆n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∆n∆n+1 . . . ∆n+k+1

 (3.28)

Теорема 3.2. Число γnk является наименьшим положительным решени-

ем уравнения

D(γ) =


∆̃n−k+1∆̃n−k+2 . . . ∆̃n

∆̃n−k+2∆̃n−k+3 . . . ∆̃n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∆̃n ∆̃n+1 . . . ∆̃n+k+1

 = 0,
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где

∆̃n−j =
2k∑
ν=1

ε−jν exp
[ n

iενπk

γ∫
0

η
1
2k−1Ψν(η)dη

]
,

Ψν(η) =

∞∫
0

1− s2kη
(s2η

1
k − ε̄2ν)(s2n − ηs2k + 1)

ds,

ε1, ε2, . . . , ε2k — корни степени 2k из +1.

Заключение. В данной работе были рассмотрены неравенства типа Кол-

могорова и изучены методы нахождения наилучшей константы в нем. Было

показано, что при некоторых условиях задача о нахождении наилучшей кон-

станты может быть сведена к соответствующей экстремальной задаче. Для

исследования такого рода задач потребовалось привести методы их решения.

Были введены некоторые теоретические сведения из классического вариацион-

ного исчисления и оптимального управления. Благодаря этому удалось найти

наилучшую константу в неравенстве Адамара и решить несколько задач опти-

мального управления. Кроме того, была доказана теорема, устанавливающая

связь наилучшей константы с наименьшим собственным значением некоторой

вспомогательной матрицы, и изложен метод интегральных представлений. Та-

ким образом, поставленные цели были выполнены.
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