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Введение. Алгебраическая структура множества однолистных функций, за-

данных в области G, оказывается довольно сложной. Простые примеры по-

казывают, что это множество, например, нелинейно и невыпукло. Вместе с

тем, свойство однолистности инвариантно относительно операции компози-

ции надлежащих отображений, что позволяет выделить соответствующие по-

лугруппы конформных отображений и применить для их изучения алгебра-

ические методы. Именно это свойство было положено К. Лёвнером в 1923

году в основу разработанного им метода параметрических представлений од-

нолистных аналитических функций. На этом пути прослеживаются глубокие

связи между однолистными аналитическими функциями в единичном круге и

функциями касса C – Каратеодори.

Левнер в [2] исследовал задачу о представлении произвольного отоб-

ражения из полугруппы L в виде композиции преобразований, бесконечно

близких к тождественному. Другими словами, он изучил возможность пред-

ставления произвольного отображения ϕ из L в виде композиции инфините-

зимальных преобразований полугруппы L, то есть как отображения вида

ϕ(z) = w(z, T, s; p), (1)

где w(t) = w(z, T, s; p) – решение дифференциального уравнения

dw

dt
= −wp(s, t) (2)

с начальным условием w(s) = z, 0 ≤ s ≤ t ≤ T < ∞, и и однопарамет-

рическим семейством p(z, t) инфинитезимальных преобразований, таких что

p(·, t) ∈ C.

Уравнение (1) известно теперь как уравнение Левнера. Сам Левнер изу-

чил детально лишь частный случай этого уравнения.

Основным объектом исследования обычно является класс S, состоящий
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из всех однолистных аналитических функций f(z) в круге D, нормированных

условиями f(0) = 0, f
′
(0) = 1.

Уравнение Левнера генерирует подкласс S(L) класса S, состоящий из

конформных отображений круга на области, которые получаются из плоско-

сти C удалением одного жорданового разреза, уходящего на бесконечность. С

другой стороны, из простых геометрических соображений и теоремы Каратео-

дори о сходимости к ядру следует, что любая функция класса S может быть

аппроксимирована, в топологии локально равномерной сходимости в круге D,

последовательностью функций класса S(L) [1].

Цель работы. Целью настоящей работы является рассмотрение уравнения

Левнера и построение интегралов этого уравнения с частными случаями управ-

ляющей функции.

Объем и структура работы. Бакалаврская работа состоит из введения, трех

глав, заключения, приложения и списка литературы. Первая глава – семей-

ство областей Левнера, вторая глава называется уравнение Левнера. Третья

глава – интегрирование уравнения Левнера с различными функциями управ-

ления. Третья глава состоит из трех разделов: уравнение Левнера с посто-

янной управляющей функцией, уравнение Левнера с управляющей функцией

µ(τ, α, β) = ei(α+βτ) и уравнение Левнера с кусочно-заданным управлением.

Краткое содержание работы.

Глава 1. В первой главе выпускной работы вводится семейство областей Лев-

нера, доказываются леммы об одновременном стягивании дуг в одну и ту же

точку при предельном переходе.

Зафиксируем область ∆ с разрезом L, не проходящим через точку z = 0,

принадлежащую этой области. Пусть w = ϕ(α) – параметрическое уравнение

прямой L. Тогда L = {w : w = ϕ(α), 0 ≤ α ≤ α0}, где ϕ(0) = B – внутренняя

точка области ∆, ϕ(α0) = A – точка границы ∆ (рис. 1.1).
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Рис. 1.1

Рассмотрим Lα′ = {w : w = ϕ(α), α′ ≤ α ≤ α0} и введём семейство областей

∆α, называемое семейством областей Левнера, ∆α = ∆\Lα, при 0 ≤ α ≤ α0.

Рассмотрим семейство аналитических функций w = ψ(z, α), однолистно

отображающих круг {|z| < 1} на ∆α, причем ψ(0, α) = 0, ψ
′

z(0, α) > 0. Тогда

имеем разложение ψ(z, α) = γ1(α)z + γ2(α)z2 + . . . в |z| < 1. И рассмотрим

обратные к ним функции F (w, α) = ψ−1(z, α) (рис. 1.2), которые однолистно

отображают ∆α на {|z| < 1}, F (0, α) = 0, F
′

w(0, α) > 0 и имеют разложение в

окрестности точки w = 0

F (w, α) =
1

γ1(α)
w + . . .

Рис. 1.2

Лемма 1. Существует непрерывная замена переменных α = α(t), α, t ∈

R, такая, что γ1(α) = et.

Лемма 2. Если t
′ → t

′′
или t

′′ → t
′
, то Φ(z, t

′
, t
′′
) → z равномерно на

любом компактном подмножестве замкнутого единичного круга, не содер-
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жащем точку M(t
′
, t
′
) (если t

′
– фиксированное) или точку A (если t

′′
– фик-

сированное).

Лемма 3. Если t
′
– фиксирована, а t

′′ → t
′
, то разрез l(t

′
, t
′′
) стягивается

в некоторую точку M на единичной окружности.

Лемма 4. Если t
′′

– фиксирована, а t
′ → t

′′
, то дуга

^
w1w2= γ(t

′
, t
′′
)

стягивается в точку M на единичной окружности.

Глава 2. В этой главе рассматривается непосредственно уравнение Левнера.

Здесь доказываются утверждения об удовлетворении функции обыкновенному

дифференциальному уравнению, дифференциальному уравнению в частных

производных и о задаче Коши для уравнения Левнера.

Теорема 1. Функция F (w, t) удовлетворяет дифференциальному урав-

нению Левнера
dF (w, t)

dt
= −F (w, t)

1 + e−iµF (w, t)

1− e−iµF (w, t)

Теорема 2. Функция ψ(z, t) удовлетворяет уравнению Левнера в част-

ных производных
∂ψ(z, t)

∂t
= z · ∂ψ(z, t)

∂z
· e

iµ + z

eiµ − z

Теорема 3 (О задаче Коши для уравнения Левнера). Пусть функция µ =

µ(t) непрерывна при t ∈ [0,+∞). Тогда функция ξ = ξ(z, t), которая является

решением задачи Коши для дифференциального уравнения Левнера
dξ

dt
= −ξ e

iµ(t) + ξ

eiµ(t) − ξ
ξ(z, 0) = z

однолистна в единичном круге |z| < 1 как функция от z и существует предел

lim
t→∞

etξ(z, t) = f(z), причем f(z) однолистна в |z| < 1.
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Глава 3. В третьей главе работы рассматривается интегрирование уравнения

Левнера с частными случаями управляющей функции. В первую очередь, на-

ходится решение уравнения

dξ

dτ
= −ξµ(τ) + ξ

µ(τ)− ξ
, 0 ≤ τ < +∞ (3)

с начальным условием ξ(z, 0) = z, где управляющая функция µ(τ) = eiα – это

постоянная функция.

Функция
eτξ(z, τ)

(eiα + ξ(z, τ))2
=

z

(eiα + z)2
, (4)

заданная в неявном виде, является решением уравнения (3).

Функция Кебе

f(z, α) =
z

(1 + ze−iα)2
,

полученная при предельном переходе в (4) при τ → ∞, отображает единич-

ный круг на плоскость с разрезом по лучу, вершина которого имеет модуль,

равный
1

4
и который образует угол α с положительной частью вещественной

оси.

Была приведена иллюстрация отображения единичного круга функцией

Кебе в пакете Mathematica.

В качестве второго примера интегрирования уравнения Левнера с част-

ными случаями управляющей функции рассматривается уравнение

dξ

dτ
= −ξµ(τ) + ξ

µ(τ)− ξ
, 0 ≤ τ < +∞ (5)

с начальным условием ξ(z, 0) = z, где управляющей функцией µ(τ) является

линейная функция µ(τ) = ei(α+βτ), α, β ∈ R.

Функция ξ(z, τ), являющаяся решением уравнения (5), записывается в
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неявном виде следующим образом:

eτξ

(1 + δµ̄ξ)
2

1−iβ
=

z

(1 + e−iαδz)
2

1−iβ
, где δ =

1− iβ
1 + iβ

. (6)

При стремлении в (6) τ →∞ была получена предельная функция

f(z) =
z

(1 + e−iαδz)
2

1−iβ
, где δ =

1− iβ
1 + iβ

.

Следующий результат заключен в рассмотрении дифференциального урав-

нения Левнера
dξ

dτ
= −ξµ(τ) + ξ

µ(τ)− ξ
(7)

с кусочно-заданной управляющей функцией

µ(τ) =

e
iα1τ , 0 ≤ τ ≤ τ1

ei(α2τ+β), τ1 ≤ τ,

где параметры τ1, α1, α2, β подобраны специальным образом.

Произведя интегрирование уравнения (7) на промежутках τ ∈ [0, τ1] и

[τ1,∞), было найдено его решение, заданное в неявном виде:

eτξ1(z, τ)

(1 + δ1e−i(α2τ+β)ξ1(z, τ))
2

1−iα2

=
eτ1ξ∗(z)

(1 + δ1e−i(α2τ1+β)ξ∗(z))
2

1−iα2

, (8)

где δ1 =
1− iα2

1 + iα2
.

Предельная функция, полученная при переходе к пределу в последнем

уравнении при τ →∞, имеет вид

f(z) =
eτ1ξ∗(z)

(1 + δ1e−i(α2τ1+β)ξ∗(z))
2

1−iα2

.

Заключение. Целью работы являлось рассмотрение уравнения Левнера и по-
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строение интегралов этого уравнения с частными случаями управляющей функ-

ции. В работе рассмотрены случаи постоянного управления, линейного управ-

ления, а также кусочно-заданной управляющей функции. Для каждого случая

получены однолистные функции класса S.
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