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Введение
Из российских работ, посвященных приближению функции многочлена-

ми на треугольной сетке, отметим и рассмотрим работы Субботина Ю. Н. и
Байдаковой Н. В..

В работе ставятся следующие задачи:
1. Ознакомиться с определением триангуляции и триангуляции Делоне,

рассмотреть проверку условия Делоне при построении для заданных пар тре-
угольников, способы построения триангуляции.

2. Построить кубический интерполяционный многочлен 2-х переменных
на треугольной сетке, оценить точность его построения.

3. Построить кубический интерполяционный многочлен в 3-х мерном про-
странстве, оценить точность его построения.

Основное содержание работы
Введём определения и леммы для изучения задачи триангуляции, пред-

ставленные А.В.Скворцовым:
Определение 1. Триануляцией называют планарное разбиение плоско-

сти наN фигур, из которых одна является внешней неограниченной, а осталь-
ные – треугольниками.

Определение 3. Задачей построения триангуляции по заданному на-
бору двумерных точек называется задача соединения заданных точек непе-
ресекающимися отрезками так, чтобы образовалась триангуляция.

Определение 6. Говорят, что триангуляция удовлетворяет условию Де-
лоне, если внутрь окружности, описанной вокруг любого построенного тре-
угольника, не попадает ни одна из заданных точек триангуляции.

Рис. 1. Триангуляция Делоне

Лемма (Скворцов). Любая триангуляция множества из N точек имеет
одинаковое число треугольников T = 2 · (N − 1)−Nc (но не более 2 ·N − 4) и
одинаковое число ребер R = 3 · (N − 1)−Nc (не больше или равно 3 ·N − 6).

Число различных триангуляций конечного множества точек конечно. Вво-
дя критерии сравнения триангуляций множества P = {p1, p2, . . . , pN}, N > 3,
можно разработать различные алгоритмы построения триангуляций.
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Метод конечных элементов — это численная процедура решения задач,
сформулированных в виде дифференциального уравнения или вариационно-
го принципа. Метод конечных элементов заключается в том, что аппрокси-
мирующая функция (близкая к исходной) является линейной комбинацией
непрерывных кусочно-гладких финитных функций. Финитные функции от-
личны от нуля только в заданном интервале. В МКЭ под такими интервалами
подразумеваются конечные элементы, на которые разбивается область.

Термин метод конечных элементов, определяет широкий спектр вычисли-
тельных технологий в соответствии с некоторыми общими свойствами. Про-
цесс конечно-элементного анализа включает определенную последователь-
ность шагов. Перечислим эти шаги:

1. Дискретизация области: построение сетки, задание свойств элементов.
2. Выбор аппроксимирующих (базисных) функций, которые выбираются

в виде полиномов.
3. Формирование СЛАУ с учетом вкладов от элементов и узлов, введение

граничных условий в систему уравнений.
4. Решение системы уравнений.
5. Определение расчетных величин в элементах. Этими величинами обыч-

но являются производные от неизвестной функции.
Будем рассматривать деление области на треугольники, где на каждом

треугольнике задаётся полином третьей степени. На каждом треугольнике
кубический полином интерполяционными условиями будет определяться од-
нозначно, и в дальнейшем будем рассматривать лишь один треугольник.

Введем следующие обозначения для полинома третьей степени (кубиче-
ского) по совокупности переменных:

P3(x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + a7x

2y + a8xy
2 + a9y

3.
(2.1)

Пусть ∆ — невырожденный треугольник и функция f(x, y) непрерывна
на нем вместе с частными производными до четвертого порядка включитель-
но. Будем предполагать, что равномерные нормы на треугольнике ∆ любых
четвертых производных функции f(x, y) не превосходят M , где M — неко-
торое заданное число. При оценках погрешности аппроксимации константы,
не зависящие от f(x, y) и от триангуляции, не выписываются в явном виде
и иногда обозначаются одной и той же буквой K. Без ограничения общно-
сти мы можем считать, что треугольник ∆ расположен так, как показано на
рисунке 2.

В статье - Новый кубический элемент в МКЭ, написаннойЮ.Н.Субботиным,
на интерполяционный полином P3(x, y) = P3(f ;x, y) налагаются следующие
условия:
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Рис. 2.

1. Значения этого полинома в точкахA,C,D совпадают со значениями функ-
ции f(x, y) в этих точках.

2. Значения первых производных полинома по x и y в точках A,C,D сов-
падают со значениями соответствующих производных функции в тех же
точках.

3. Значения производных по x полинома и функции в точке E совпадают.

То есть, интерполяционные условия имеют следующий вид:

1.
f(A) = P3(A), f(C) = P3(C), f(D) = P3(D).

2.
∂f(A)

∂x
=
∂P3(A)

∂x
,

∂f(C)

∂x
=
∂P3(C)

∂x
,

∂f(D)

∂x
=
∂P3(D)

∂x
,

∂f(A)

∂y
=
∂P3(A)

∂y
,

∂f(C)

∂y
=
∂P3(C)

∂y
,

∂f(D)

∂y
=
∂P3(D)

∂y
.

3.
∂f(E)

∂x
=
∂P3(E)

∂x
.

Пусть M - некоторое заданной число, и любые четвертые производные
функции f(x, y) не превосходят число M . Под W 4M будем понимать класс
функций, непрерывных на ∆, у которых на ∆ существуют непрерывные про-
изводные четвертого порядка по всем направлениям ξ1, ξ2, ξ3, ξ4, и для любых
x, y ∈ ∆ и любых ξs(s = 1, 2, 3, 4) выполняется неравенство

|Dξ1,ξ2,ξ3,ξ4f(x, y)| 6M.

Оценим точность построенного интерполяционного многочлена P3(x, y),
удовлетворяющего условиям 1)-3).
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Теорема 1. Справедливы следующие неравенства:

∥∥∥∥∂ke(x, y)

∂xk

∥∥∥∥
C(∆)

6 KMH4−k (0 6 k 6 3), (2.3)

∥∥∥∥∂ke(x, y)

∂y∂xk−1

∥∥∥∥
C(∆)

6
KMH4−k

sin γ
(1 6 k 6 3), (2.4)

∥∥∥∥ ∂ke(x, y)

∂y2∂xk−2

∥∥∥∥
C(∆)

6
KMH4−k

sin2 γ
(2 6 k 6 3), (2.5)

∥∥∥∥∂3e(x, y)

∂y3

∥∥∥∥
C(∆)

6
KMH

sin3 γ
, (2.6)

где K — константы, не зависящие от f и ∆.

Для доказательства теоремы был рассмотрен ряд вспомогательных ре-
зультатов.

Положим ei,j(x, y) = ∂i+j

∂xi∂yj [f(x, y)−P3(x, y)]. Тогда в силу условий в точке
A имеем

e0,0 = e1,0(0, 0) = e0,1(0, 0) = 0. (2.7)

Лемма 1. Справедливы следующие равенства:

e2,0(0, 0) =

H∫
0

(H − t)2 t

H2
· ∂

4f(t, 0)

∂t4
dt, (2.9)

e3,0(0, 0) = −
H∫

0

(H − t)2(H + 2t)

H3
· ∂

4f(t, 0)

∂t4
dt. (2.10)

Лемма 2. Справедливы следующие равенства:

|e1,1(0, 0)| 6 KMH2 max
(a
h
, 1
)
, (2.13)

|e2,1(0, 0)| 6 KMH max
(a
h
, 1
)
, (2.14)

|e1,2(0, 0)| 6 KMH max

(
a2

h2
, 1

)
. (2.15)

5



Лемма 3. Справедливы следующие равенства:

|e0,1(0, 0)| 6 KMH2 max

(
a2

h2
, 1

)
, (2.22)

|e0,3(0, 0)| 6 KMH max

(
a3

h3
, 1

)
. (2.23)

Доказательство. Теорема 1. Используя формулу Тейлора в окрестности
точки (0, 0) с остаточным членом в форме Лагранжа, учитывая леммы 1-
3 и неравенство a

h = ctg β 6 1
sinβ 6

2
sin γ , получаем оценки (2.3) − (2.6).

Обобщением формул теоремы 1 является∥∥∥∥∂ke(x, y)

∂yj∂xk−j

∥∥∥∥
C(∆)

6 KMH4−k 1

sinj γ
. (1)

�

В статье Байдаковой, вычислялась погрешность приближения для поли-
нома третьей степени по совокупности переменных

P3(x, y, z) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + a7x

2y + a8xy
2+

+a9y
3 + a10z + a11z

2 + a12z
3 + a13xz

2 + a14yz
2 + a15x

2z+

+a16y
2z + a17xyz + a18xz + a19yz,

который задаётся с помощью 20 условий, из которых 16 имеют вид:

P3(ai) = f(ai) (i = 1, 2, 3, 4), (2)

∂P3(ai)

∂τij
=
∂f(ai)

∂τij
(i = 1, 2, 3, 4; j ∈ {1, 2, 3, 4}\{i}). (3)

Оставшиеся условия выбирали так, чтобы можно было обеспечить непрерыв-
ность кусочно полиномиальной функции на исходной триангулированной об-
ласти: зададим по одной смешанной производной на каждой из граней Ti в
вершине при среднем или наибольшем угле. При выборе такого условия, мно-
гочлен P3 на каждой из граней становится многочленом двух переменных.

Для условия смешанных производных, будем различать симплексы двух
типов К1 и К2. К типу К1 отнесем симплексы, у которых два наименьших
ребра не имеют общих точек, к типу К2 - симплексы, у которых такие ребра
имеют общую вершину.

Для симплекса типа К1 с наименьшими ребрами a1a4 и a2a3 (рисунок 3),
две смешанные производные зададим в a1 и две - в a2:
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Рис. 3. Симплекс типа К1 Рис. 4. Симплекс типа К2

∂2P3(ai)

∂τij∂τik
=
∂2f(ai)

∂τij∂τik
((i, j, k) ∈ {(1, 2, 4), (1, 3, 4), (2, 1, 3), (2, 4, 3)}). (4)

Для симплекса типа К2 берём наименьшее и следующее по величинам
ребра принадлежащие грани T1 (рисунок 4). Задаются по две производных в
любых двух вершинах, принадлежащих T1. Пусть это будут точки a2 и a3:

∂2P3(ai)

∂τij∂τik
=
∂2f(ai)

∂τij∂τik
((i, j, k) ∈ {(2, 1, 3), (2, 1, 4), (3, 1, 4), (3, 4, 2)}). (3.5)

Рассматривая на каждом из указанных симплексов отдельно данные набо-
ры интерполяционных условий, будем получать СЛАУ, которая имеет един-
ственное решение.

Через sin γ обозначили наименьший из всех максимальных углов в тре-
угольнике.

Функция f(x, y, z) непрерывна на T вместе со всеми частными производ-
ными до 4 порядка включительно, и для любых задающих направления еди-
ничных векторов ξ1, . . . , ξ4 абсолютные значения производных D4

ξ1,...,ξ4
огра-

ничены на T числом M . Обозначим e(u) = f(u) − P3(u), где u ∈ T . Для
каждого типа симплекса и соответствующей им системы интерполяционных
условий (3.2)-(3.4); (3.2), (3.3) и (3.5) будет выбираться собственная система
координат xyz и доказана теорема об оценках сверху.

I. Симплекс типа К1 и условия (3.2)-(3.4). Выберем систему коорди-
нат xyz так, чтобы ось x была параллельна ребру a1a2, в вершинах которого
задаются смешанные производные (3.4). Данное ребро принадлежит граням
T4 и T3. Пусть для определенности синус угла грани T4 больше синуса уг-
ла принадлежащего грани T3 (sin β4 ≥ sin β3). В этом случае плоскость xy
совместится с плоскостью треугольника T4. Ось z перпендикулярна плоско-
сти xy (рисунок 5). Пусть ϕijx , ϕijy , ϕijz углы между τij и соответствующими
координатными осями. Тогда

| cosϕ14
z | = sin γ4

14 = sin γ4, | cosϕ14
y | 6 R sin β3 6 R sin β4, (3.6)

7



Рис. 5. Расположение симплекса К1

где R - некоторая константа не зависящая от T .

Теорема 2. Для введенной системы координат, симплекса типа К1 и усло-
вий интерполяции (3.2)-(3.4) справедливы следующие оценки:∣∣∣∣∂s+p+qe(u)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH4−s−p−q

sinp β4 sinq γ4
(3.7)

где u ∈ T ; 0 6 s+ p+ q 6 3; C - константа, не зависящая от T и функции
f .

Доказательство. Получим оценки производных функции e(u) в вершине
a2. Значения функции e(u) и её первых производных в точке a2 равны нулю
в силу условий (3.2), (3.3). Выполним оценку производных второго и третьего
порядков.

Лемма 4. Пусть s+ p+ q = 2. Тогда имеют место следующие оценки:∣∣∣∣ ∂2e(a2)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH2

sinp β4 sinq γ4
. (3.8)

Лемма 5. Пусть s+ p+ q = 3. Тогда имеют место следующие оценки:∣∣∣∣ ∂3e(a2)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH

sinp β4 sinq γ4
. (3.12)

Продолжим доказательство теоремы 2.
Пусть s, p, q, t, r,m > 0 и 0 6 s+ p+ q+ t+ r+m 6 3. Тогда, представляя

производные по направлению через производные по x, y, z и выполняя оценки
по леммам 4, 5 и соотношениям (3.6), будем иметь∣∣∣∣ ∂s+p+q+t+r+me(a2)

∂xs∂yp∂zq∂τ t21∂τ
r
23∂τ

m
14

∣∣∣∣ 6 CMH4−(s+p+q+t+r+m)

sinp β4 sinq γ4
.
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А именно получили обобщенный вид теоремы 2. �

II. Симплекс типа К2 и условия (3.2), (3.3), (3.5). Выберем систему
координат xyz так, чтобы ось x была параллельна ребру a2a3, в вершинах ко-
торого задаются смешанные производные (3.5). Данное ребро принадлежит
граням T1 и T4. Пусть для определенности sin β4 > sin β1. В этом случае плос-
кость xy совместим с плоскостью треугольника T4. Ось z перпендикулярна
xy.

Пусть, ϕijx , ϕijy , ϕijz - углы между τij и соответствующими координатными
осями. Отметим, что условия (3.5) задаются в средних или наибольших углах
граней Ti, ребра a2a4 и a1a4 при выбранном способе интерполяции не могут
быть наименьшими в T1 и T2 соответственно. Тогда

|a3 − a4| 6 2 max{|a2 − a4|, |a1 − a4|}

. Таким образом, верны соотношения

| cosϕ34
z | 6 2 max sin γ4

24, sin γ
4
14 6 R1 sin γ4, | cosϕ34

y | 6 R2 sin β1 6 R2 sin β4

(3.15)

(первое неравенство следует из соотношений между ребрами aia4, i = 1, 2, 3;
второе получается аналогично неравенству (3.6)).

Теорема 3. Для введенной системы координат, симплекса типа К2 и усло-
вий интерполяции (3.2), (3.3), (3.5) справедливы следующие оценки:

∣∣∣∣∂s+p+qe(u)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH4−s−p−q

sinp β4 sinq γ4
, (3.16)

где u ∈ T ; 0 6 s+ p+ q 6 3; C - константа, не зависящая от T и функции
f .

Доказательство. Для доказательства теоремы нам нужны оценки произ-
водных для e(u) в точке a3. Значения функции e(u) и её первых производных
в a3 равны нулю в силу условий (3.2), (3.3). Остаётся оценить производные
второго и третьего порядка.

Лемма 6. Пусть s+ p+ q = 2. Тогда имеют место следующие оценки:

∣∣∣∣ ∂2e(a3)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH2

sinp β4 sinq γ4
. (3.17)

Лемма 7. Пусть s+ p+ q = 3. Тогда имеют место следующие оценки:∣∣∣∣ ∂3e(a3)

∂xs∂yp∂zq

∣∣∣∣ 6 CMH

sinp β4 sinq γ4
. (3.18)
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Продолжим доказательство теоремы 3.
Пусть s, p, q, t, r,m > 0 и 0 6 s+ p+ q+ t+ r+m 6 3. Тогда, представляя

производные по направлению через производные по x, y, z и выполняя оценки
по леммам 6, 7 и соотношениям (3.15), будем иметь∣∣∣∣ ∂s+p+q+t+r+me(a3)

∂xs∂yp∂zq∂τ t31∂τ
r
32∂τ

m
34

∣∣∣∣ 6 CMH4−(s+p+q+t+r+m)

sinp β4 sinq γ4
.

А именно получили обобщенный вид теоремы 3. �

С помощью теорем 2 и 3, мы доказали оценки точности интерполяционных
многочленов, которые построены на симплексах К1 и К2.

Заключение
В работе поставленные задачи были достигнуты: рассмотрены основные

определения триангуляции, изучена триангуляция Делоне для плоскости -
условие Делоне и его проверка, изучены различные алгоритмы построения
триангуляции Делоне. Также построены кубический интерполяционный мно-
гочлен 2-х переменных на треугольной сетке и кубический интерполяцион-
ный многочлен в 3-х мерном пространстве, произведена оценка точности их
построения.
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