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ÂÂÅÄÅÍÈÅ

Â ýòîé ðàáîòå ìû ðàçáèðàåì ìîäåëü ðûíêà, âïåðâûå ïîÿâèâøóþñÿ â

[1], íàñëåäóþùóþ èçâåñòíóþ ìíîãîìåðíóþ ìîäåëü Áëýêà-Øîóëçà (ñì. [2-4,5]

è ññûëêè â íèõ) äëÿ ñëó÷àÿ, êîãäà öåíû àêòèâîâ êîððåëèðóþò íå òîëüêî ñ

îøèáêàìè, íî è ìåæäó ñîáîé.

Íà ñàìîì äåëå, öåíû íà ðûíêå àêöèé îòäåëüíûõ êîìïàíèé âëèÿþò äðóã

íà äðóãà íå òîëüêî ðûíî÷íûìè íåèçâåñòíûìè (êîòîðûå èñïîëüçóþòñÿ êàê îñ-

íîâíûå ïåðåìåííûå â ìíîãîìåðíîé ìîäåëè Áëýêà-Øîóëçà), íî òàêæå ìíîãèìè

ýêîíîìè÷åñêèìè ôàêòîðàìè; íàïðèìåð, ó êîìïàíèé âîçìîæåí îäèí è òîò æå

êîíå÷íûé ðûíîê ïîòðåáèòåëåé èëè ðûíîê ðåñóðñîâ, èëè îíè ïðèíàäëåæàò ê

ñìåæíûì îòðàñëÿì è âçàèìíî âëèÿþò äðóã íà äðóãà.

Â ýòîé ìîäåëè öåíû ðèñêîâàííûõ àêòèâîâ (ïî ïðåäïîëîæåíèþ) óäîâëå-

òâîðÿþò òðåáîâàíèÿì îáùèõ ìíîãîìåðíûõ ëèíåéíûõ ñòîõàñòè÷åñêèõ äèô-

ôåðåíöèàëüíûõ óðàâíåíèé ñ ìóëüòèïëèêàòèâíîé ïîãðåøíîñòüþ. Òàêèå óðàâ-

íåíèÿ ðàñøèðÿþò ìíîãîìåðíóþ ìîäåëü Áëýêà-Øîóëçà è ñâîäÿòñÿ ê íåé â

ñëó÷àå, êîãäà ñîîòâåòñòâóþùèå êîýôôèöèåíòû îáðàçóþò äèàãîíàëüíóþ ìàò-

ðèöó. Â ýòîì ñëó÷àå íàëè÷èå íåíóëåâûõ âíå-äèàãîíàëüíûõ ýëåìåíòîâ (êîýô-

ôèöèåíòîâ äèôôóçèè, èíà÷å - ìàòðèöû âîëàòèëüíîñòè) ïîçâîëÿåò îõâàòèòü

íåêîòîðûå èíòåðåñíûå ïðèëîæåíèÿ, íàïðèìåð: âîçìîæíîå áàíêðîòñòâî äëÿ

íåêîòîðîé êîìïàíèè, ÷üè àêöèè ïðîäàþòñÿ íà ðûíêå (ñëó÷àé, êîãäà ñîîòâåò-

ñòâóþùèå öåíû àêöèé ìîãóò äîñ÷èòü íóëÿ è íèêîãäà íå îêóïÿòñÿ).

Ðàáîòà îðãàíèçîâàíà ñëåäóþùèì îáðàçîì: â ãëàâå 1 ìû ïðèâîäèì íåêî-

òîðûé òåîðåòè÷åñêèé ìàòåðèàë (çàèìñòâîâàííûé èç êíèãè [6] ), èñïîëüçóåìûé

â äàëüíåéøèõ ìàòåìàòè÷åñêèõ ðàññóæäåíèÿõ, à êîíêðåòíåå âûâîä, îáîñíîâà-

íèå èñïîëüçóåìûõ â ðàáîòå ôîðìóë Èòî.

Â ãëàâå 2 ìû îïèñûâàåì ìîäåëü ðûíêà â äåòàëÿõ. À òàêæå ïîêàçûâà-

åì, êàê îíà ñâîäèòñÿ ê ìíîãîìåðíîé ìîäåëè Áëýêà-Øîóëçà â ñïåöèàëüíîì

"äèàãîíàëüíîì"ñëó÷àå.

Â ãëàâå 3 ìû îïèøåì ÿâíûå ðåøåíèÿ äëÿ óðàâíåíèé öåí íà àêöèè â ñëå-

äóþùèõ ñëó÷àÿõ: â "Àáåëåâîì"ñëó÷àå è â "ðàçðåøèìîì ñëó÷àå". Ïîêàæåì,

÷òî ðåøåíèå îñíîâíîãî óðàâíåíèÿ äëÿ ýâîëþöèè öåí íà àêöèè ìîæåò áûòü

ïîñòðîåíî ñ ïîìîùüþ íåêîòîðîãî èòåðàöèîííîãî ìåòîäà.

Ìàòåðèàë ãëàâ 2 è 3 ïðåäñòàâëÿåò ñîáîé äåòàëèçèðîâàííîå èçëîæåíèå

ìàòåðèàëà ñòàòüè [10].
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Â ãëàâå 4 ðàññìàòðèâàåòñÿ ïîñòðîåíèå ìîäåëè ðûíêà ñî âçàèìîäåé-

ñòâóþùèìè àêöèÿìè. Mîäåëü ðûíêà, íàñëåäóþùóþ èçâåñòíóþ ìíîãîìåðíóþ

ìîäåëü Áëýêà-Øîóëçà äëÿ ñëó÷àÿ, êîãäà öåíû àêòèâîâ âçàèìîäåéñòâóþò íå

òîëüêî ñî ñòàíäàðòíûìè ðåãðåññîðàìè, íî è ìåæäó ñîáîé.

Íà ñàìîì äåëå, öåíû íà ðûíêå àêöèé îòäåëüíûõ êîìïàíèé âëèÿþò äðóã

íà äðóãà íå òîëüêî ðûíî÷íûìè íåèçâåñòíûìè (êîòîðûå èñïîëüçóþòñÿ êàê îñ-

íîâíûå ïåðåìåííûå â ìíîãîìåðíîé ìîäåëè Áëýêà-Øîóëçà), íî òàêæå ìíîãèìè

ýêîíîìè÷åñêèìè ôàêòîðàìè; íàïðèìåð, ó êîìïàíèé âîçìîæåí îäèí è òîò æå

êîíå÷íûé ðûíîê ïîòðåáèòåëåé èëè ðûíîê ðåñóðñîâ, èëè îíè ïðèíàäëåæàò ê

ñìåæíûì îòðàñëÿì è âçàèìíî âëèÿþò äðóã íà äðóãà. Â ýòîé ãëàâå âûïîë-

íÿåòÿñ äîêàçàòåëüñòâî ñóùåñòâîâàíèÿ ðûíêà ñ òðåìÿ âçàèìîäåéñòâóþùèìè

àêöèÿìè, ïîñòðîåíèå ýòîé ìîäåëè è ïðèâåäåíèå ïðîãðàììíîãî îáåñïå÷åíèÿ,

ðàñ÷èòûâàþùåãî öåíû àêöèé ïî âûøåóêàçàííûì ðàñ÷åòàì ìîäåëè.
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Ãëàâà 1. Ôîðìóëû Èòî

Ðàññìîòðèì σ-àëãåáðó Fr × β - íàèìåíüøóþ σ-àëãåáðó, ïîðîæäåííóþ

íàáîðàìè (À,Â), ãäå A ∈ FT , B ∈ β, Ft - ñòàíäàðòíàÿ áðîóíîâñêàÿ ôèëüòðà-

öèÿ, β�áîðåëåâñêàÿ σ-àëãåáðà íà [0,T].

Ôóíêöèÿ f(ω, t) ïðåäïîëàãàåòñÿ èçìåðèìîé îòíîñèòåëüíî Ft×β (îáîçíà-
÷àåòñÿ f ∈ Ft×β). Êðîìå òîãî, ïðåäïîëàãàåì, ÷òî ôóíêöèÿ f � ïðåäñêàçóåìà,

ò.å. ïðè âñåõ t ∈ [0, T ]

f(ω, t) ∈ Ft

, äðóãèìè ñëîâàìè, f ïîëíîñòüþ îïðåäåëÿåòñÿ èíôîðìàöèåé ê ìîìåíòó t.

Êëàññ H2[0, T ] ñîñòîèò èç âñåõ èçìåðèìûõ ïðåäñêàçóåìûõ ôóíêöèé f

òàêèõ, ÷òî

E

(∫ T

0

f 2(ω, t)dt

)
<∞

. Íîðìà â H2[0, T ] îïðåäåëÿåòñÿ êàê

||f ||H2 = ||f ||L2(dP×dt) =

(
E

(∫ T

0

f 2(ω, t)dt

)) 1
2

Îïðåäåëèì ñíà÷àëà ñòîõàñòè÷åñêèé èíòåãðàë äëÿ êëàññà ôóíêöèÿ H2
0 [0, T ],

ò.å. ôóíêöèé, ïðåäñòàâèìûõ â âèäå

f(ω, t) =
n−1∑
i=0

ai(ω)II(ti,ti+1)(t),

ãäå ti = iT
n , i = 0, 1, ..., n, ai ∈ Fti (ò.å. ïîëíîñòüþ îïðåäåëåíû ê ìîìåíòó ti),

E(a2i ) <∞ (èç ÷åãî ñëåäóåò êîíå÷íîñòü ||f ||).
Äëÿ òàêèõ ôóíêöèé èíòåãðàë Èòî îïðåäåëÿåòñÿ êàê ñóììà

I(f) =
n−1∑
i=0

ai(ω)(Bti+1
(ω)−Bti(ω)).

Îïðåäåëåíèå 1.1 Íåóáûâàþùàÿ ïîñëåäîâàòåëüíîñòü ìîìåíòîâ îñòàíîâ-

êè {νn} íàçûâàåòñÿ H2[0, T ]-ëîêàëèçóþùåé äëÿ f, åñëè

fn(ω, t) = f(ω, t)II{t≤νn} ∈ H
2[0, T ]
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ïðè âñåõ íàòóðàëüíûõ n è

P (∪∞n=1 {ω : νn = T}) = 1.

Ëåãêî âèäåòü, ÷òî äëÿ f ∈ L2
loc ìîìåíòû îñòàíîâêè

τn := inf

{
s :

∫ s

0

f 2(ω, t)dt ≥ ns ≥ T

}
îáðàçóþò H2[0, T ]-ëîêàëèçóþùóþ ïîñëåäîâàòåëüíîñòü.

Ïóñòü òåïåðü f ∈ L2
loc è {νn} −H2[0, T ]-ëîêàëèçóþùàÿ ïîñëåäîâàòåëü-

íîñòü. Ïîëîæèì

g(ω, s) = f(ω, s)II{s≤νn(ω)}.

Îáîçíà÷èì ÷åðåç {Xt,n} íåïðåðûâíûé ìàðòèíãàë, ðàâíûé èíòåãðàëó Èòî∫ t

0

g(ω, s)dBs.

Èíòåãðàë Èòî îò f ∈ L2
loc îïðåäåëÿåòñÿ êàê ïðåäåë ïðîöåññîâ {Xt,n} ïðè

n→∞, ò.å. òàêîé ñëó÷àéíûé ïðîöåññ {Xt}, ÷òî ïðè âñåõ t ∈ [0, T ]

P
(
Xt = lim

n→∞
Xt,n

)
= 1.

Äàëåå ïîä îáîçíà÷åíèåì ∫ t

0

f(ω, s)dBs

áóäåò ïîíèìàòüñÿ èìåííî ýòîò ïðîöåññ. Ïðè ýòîì ìîæíî äîêàçàòü, ÷òî äàííîå

îïðåäåëåíèå êîððåêòíî, ò.å. èíòåãðàë îïðåäåëåí è íå çàâèñèò îò âûáîðà ëî-

êàëèçóþùåé ïîñëåäîâàòåëüíîñòè. Êðîìå òîãî, îêàçûâàåòñÿ, ÷òî äëÿ êàæäîé

ôóíêöèè f ∈ L2
loc ñóùåñòâóåò íåïðåðûâíûé ëîêàëüíûé ìàðòèíãàë, ñîâïàäàþ-

ùèé ñ òîëüêî ÷òî îïðåäåëåííûì èíòåãðàëîì ïî÷òè íàâåðíîå. Â äàëüíåéøåì∫ t

0

f(ω, s)dBs

äëÿ f ∈ L2
loc áóäåò ñ÷èòàòüñÿ ëîêàëüíûì ìàðòèíãàëîì. Ïðè ýòîì ëîêàëèçó-

þùèå ïîñëåäîâàòåëüíîñòè â ñìûñëå îïðåäåëåíèé ëîêàëüíîãî ìàðòèíãàëà è â
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ñìûñëå îïðåäåëåíèÿ ïðîñòðàíñòâà L2
loc ñîâïàäàþò.

Ãëàâà 2. Ìîäåëü ðûíêà

Ïóñòü (ω, F, (Ft)0≤t≤T , P ) áóäåò ñîðòèðîâàííîå âåðîÿòíîñòíîå ïðîñòðàí-

ñòâî, íà êîòîðîì îïðåäåëåíî ñòàíäàðòíîå d-ìåðíîå Áðîóíîâñêîå äâèæåíèå

Wt, 0 ≤ t ≤ T . Ïðåäïîëîæèì, äëÿ ïðîñòîòû, ÷òî áàçîâàÿ ôèëüòðàöèÿ Ft

ïîðîæäàåòñÿ Áîóíîâñêèì äâèæåíèåì W: Ft = FW
t .

Ìû ðàññìîòðèì ôèíàíñîâûé ðûíîê ñ îäíèì íå ðèñêîâûì àêòèâîì (àê-

öèåé), èìåþùèé öåíó bt, âðåìÿ t, n ðèñêîâûõ àêòèâîâ (àêöèé) ñ âåêòîðîì öåí

St = (S1
t , ..., S

n
t ) ñîâðåìåíåì t. Ïðåäïîëîæèì, ÷òî öåíà îáëèãàöèé ðàçâèâàåòñÿ

ñî âðåìåíåì ñëåäóþùèì îáðàçîì:

dbt = rtbtdt, b0 > 0, (2.1)

ãäå ïðîöåíòíàÿ ñòàâêà ïðîöåññà rt, 0 ≤ t ≤ T ïðåäïîëàãàåòñÿ îãðàíè÷åííîé,

íåîòðèöàòåëüíîé è ïðîãðåññèâíî èçìåðèìîé. Áåç ïîòåðè îáùíîñòè, äîïóñòèì,

÷òî b0 = 1.

Ââåäåì ñëó÷àéíîå ñîîòâåòñòâèå Bt : Rn → L(Rd;Rn) äàííîå äëÿ êàæ-

äîãî t ∈ [0;T ] è äëÿ êàæäîãî ω, îïðåäåëåííîå ñëåäóþùåé ôîðìóëîé:

Bt(x)y =
d∑
j=1

Bj
tx(y, ej), t ∈ [0;T ], x ∈ Rn, y ∈ Rd (2.2)

Çäåñü, Bj
t ∈ L(Rn), j = 1, ..., d, t ∈ [0;T ], ÿâëÿåòñÿ ìíîæåñòâîì îïåðàòîðî-

çíà÷èìûõ ñòîõàñòè÷åñêèõ ïðîöåññîâ, {ej}dj=1 åñòü îðòîíîðìèðîâàííûé áàçèñ

â Rd, è (·, ·) îáîçíà÷àåò ñêàëÿðíîå ïðîèçâåäåíèå â Rd. Îïèñàíèå ðàçâèòèÿ

öåí àêöèé ñîäåðæèòñÿ â ïðîöåññå-âåêòîðå, ðàññìîòðèì ñëåäóþùåå ëèíåéíîå

ñòîõàñòè÷åñêîå äèôôåðåíöèàëüíîå óðàâíåíèå ñ ìóëüòèïëèêàòèâíîé ïîãðåø-

íîñòüþ (ñì [7,8,9] è ññûëêè òàì):

dS̃t = AtS̃tdt+Bt(S̃t)dWt, S̃0 ≡ x0 ∈ Rn (2.3)

èëè ðàâíîçíà÷íî

dS̃t = AtS̃tdt+
d∑
j=1

Bj
t S̃tdβ

j
t , S̃0 ≡ x0 ∈ Rn (2.4)
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ãäå βjt , 0 ≤ t ≤ T, j = 1, ..., d åñòü îäíîìåðíûé íåçàâèñèìûé ñòàíäàðòíûé

Âèíåðîâñêèé ïðîöåññ: βjt = (Wt, ej). Ïðåäïîëîæèì, ÷òî At è Bj
t 0 ≤ t ≤

T, j = 1, ..., d, óäîâëåòâîðÿþò ñëåäóþùèì óñëîâèÿì:

(E) At è B
j
t ïðîãðåññèâíî èçìåðèìû è òàêèå, ÷òî ðåøåíèå (2.4) ñóùå-

ñòâóåò è åäèíñòâåííî íà èíòåðâàëå [0, T ] äëÿ êàæäîãî íà÷àëüíîãî âåêòîðà

x0 ∈ Rn, ïîñòîÿííûé èëè íåçàâèñèìûé îò βit, 0 ≤ t ≤ T (ñì. [1,7])

Ïðåäïîëîæèì, ÷òî äëÿ êàæäîãî i=1,...,n, S̃it ≡ xi0 > 0. Äëÿ êàæäîãî

ïðîöåññà S̃it , îïðåäåëèì íà÷àëüíîå âðåìÿ ñî ñëåäóþùèìè íàñòðîéêàìè T i0 =

inf0 ≤ t ≤ T ; S̃it ≡ 0, òîãäà ðàçâèòèå öåí íà àêöèè Sit, 0 ≤ t ≤ T, i = 1, .., n

îïðåäåëÿþòñÿ ñëåäóþùèì îáðàçîì:

Sit =
{
S̃it∧T i

0
, Ft, 0 ≤ t ≤ T

}
, Si0 = S̃i0 ≡ xi0 > 0, i = 1, ...., n (2.5)

Ïóñòü M áóäåò ðûíî÷íàÿ ìîäåëü, ñîîòâåòñòâóþùàÿ (2.1),(2.4),(2.5).

Çàìå÷àíèå 1 Ìîäåëü Ì ïðåäñòàâëÿåò ìíîãîìåðíóþ ìîäåëü Áëýêà - Øî-

óëçà (ñì. [9] è ññûëêè òàì) â ÷àñòíîì ñëó÷àå, êîãäà ìàòðèöû At è Bi
t, j =

1, ...., d, â äèàãîíàëüíîì ñëó÷àå è óäîâëåòâîðÿþò ñëåäóþùåìó

aiit = µit, biij (t) = σijt , i = 1, ...., n, j = 1, ..., d, (2.6)

ãäå µt = (µ1t , µ
2
t , ..., µ

n
t ) åñòü âåêòîð îæèäàåìîãî ðåçóëüòàòà è σ =

{
σijt

}
, i =

1, ..., n, j = 1, ..., d, åñòü ìàòðèöà âîëàòèëüíîñòè ( aikt è bikj (t) åñòü ik-òûå ýëå-

ìåíòû ìàòðèö At è B
j
t ñîîòâåòñòâåííî).

Â íàñòîÿùåé ìîäåëè, ïðîöåññû At è Bt(S̃t), 0 ≤ t ≤ T ïðåäñòàâëÿþò

ñîáîé àíàëîãè ñðåäíåé äîõîäíîñòè è âîëàòèëüíîñòè, ñîîòâåòñòâåííî.

Ãëàâà 3. Öåíû àêöèé

Ñóùåñòâîâàíèå è åäèíñòâåííîñòü ðåøåíèÿ óðàâíåíèÿ (2.4) áûëè øèðîêî

èçó÷åíû (ñì. [1,4] è ññûëêè â íèõ). Â îñíîâíîì ñëó÷àå, ðåøåíèå óðàâíåíèÿ

(2.4) ìîæåò áûòü ïîñòðîåíî íåêîòîðûì èòåðàòèâíûì ìåòîäîì (ñì. [4, ãëàâà

6.1]). Â ýòîé ãëàâå, ìû ðåøèì óðàâíåíèå (2.4) ÿâíî â íåêîòîðûõ ñïåöèàëüíûõ

ñëó÷àÿõ.

Ðàçðåøèìûé ñëó÷àé

Ââåäåì ìàòðèöó ëèíåéíûõ îïåðàòîðîâ Bk
t , k = 1, ..., d, èìåþùóþ íèæ-

íåòðåóãîëüíóþ ôîðìó (ñì. 11 äëÿ ñëó÷àÿ, êîãäà êîýôôèöèåíòû ïîñòîÿííû) è
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ïóñòü At èìååò äèàãîíàëüíóþ ôîðìó At = diag(ait), i = 1, ..., n. Òîãäà ñèñòåìà

dS̃t = AtS̃tdt+
d∑
j=1

Bj
t S̃tdβ

j
t ; S̃0 ≡ x0 ∈ Rn

ìîæåò áûòü ïåðåïèñàíà ñëåäóþùèì îáðàçîì

dS̃it = aitS̃
i
tdt+ S̃it

d∑
k=1

biik (t)dβkt +
d∑

k=1

γik(t, β)dβkt , ; S̃0 ≡ x0 ∈ Rn (3.10)

ãäå

γik(t, β) ≡ γik(t, β
1(·), ..., βd(·)) =

i−1∑
r=1

birk (t)S̃rt , i = 1, ..., n. (3.11)

Òåîðåìà 4.4

Ïóñòü Φ(t) ôóíäàìåíòàëüíàÿ ìàòðèöà, ñîîòâåòñòâóþùàÿ îäíîðîäíîìó

óðàâíåíèþ

dΦ(t) = F (t)Φ(t)dt+
m∑
i=1

Gi(t)Φ(t)dWi(t) (3.12)

çäåñü Φ(t) ìàòðèöà n× n, ðåøåíèå (12), êîòîðàÿ óäîâëåòâîðÿåò ñëåäóþùåìó
óñëîâèþ: Φ(0) = I. Îòñþäà ñëåäóåò, ÷òî ðåøåíèå ñëåäóþùåãî óðàâíåíèÿ

dX(t) = [f(t) + F (t)X(t)]dt+
m∑
i=1

[gi(t) +Gi(t)X(t)]dWi(t) (3.13)

ìîæåò áûòü çàïèñàíî òàêè îáðàçîì:

X(t) = Φ(t)

{
X(0) +

∫ t

0

Φ−1(s)

[
f(s)−

m∑
i=1

Gi(s)gi(s)

]
ds+

∫ t

0

Φ−1(s)
m∑
i=1

gi(s)dWi(s)

}

Äîêàæåì òåîðåìó 4.4 ïðè óñëîâèè, ÷òî ðåøåíèå óðàâíåíèÿ (12) èìååò âèä

Φ(t) = exp

{(
F − 1

2

m∑
i=1

G2
i

)
t+

m∑
i=1

GiWi(t)

}
,
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è ìàòðèöû F è Gi ïîïàðíî êîììóòèðóþò ìåæäó ñîáîé (FGi = GiF,GiGj =

GjGi äëÿ âñåõ i,j). Äîêàæåì, ÷òî íàøå äîïóùåíèå îáîñíîâàííî:

Íàì äàíî:

Φ(t) = exp

{(
F − 1

2

m∑
i=1

G2
i

)
t+

m∑
i=1

GiWi(t)

}

Íàéäåì çíà÷åíèå âûðàæåíèÿ dΦ ïî ôîðìóëå Èòî äëÿ ìàòðèö, îïèñàííîé â

Ãëàâå 1:

dΦ(t) =

(
∂F

∂t
+

n∑
i=1

∂F

∂xi
fi +

n∑
i,j=1

m∑
k=1

1

2

∂2F

∂xi∂xj
gikgjk

)
dt+

n∑
i=1

∂F

∂xi

m∑
j=1

gijdWj

=

((
F − 1

2

m∑
i=1

G2
i

)
Φ(t) + Φ(t) +

1

2

m∑
i=1

G2
iΦ(t)

)
dt+ Φ(t)

m∑
i=1

Gi(t)dWi(t)

= F (t)Φ(t)dt+ Φ(t)
m∑
i=1

Gi(t)dWi(t)
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Ãëàâà 4. Áåç-àðáèòðàæíûå è ñîñòàâíûå óñëîâèÿ

Ãëàâíàÿ òåîðåìà.

Ââåäåì ïðîöåññ äèñêîíòèðîâàíèÿ öåíû àêöèè Zt = (Z1
t , ..., Z

n
t ) : Zt =

1
bt
St = e−

∫ t

0
ruduSt. Ïî ôîðìóëå Èòî, ëåãêî âèäåòü, ÷òî èç (1) è (4) ñëåäóåò

dZt = (At − rtI)Ztdt+
d∑
j=1

Bj
tZtdβ

j
t (18)

Òåîðåìà 4. Ïðåäïîëîæèì, ÷òî êîýôôèöèåíòû rt, At, Bt, o ≤ t ≤ T, j =

1, ..., d ìîäåëè M îïðåäåëÿþòñÿ óñëîâèåì (Å). Ïóñòü, áîëåå òîãî, óñëîâèÿ (Â)

è (N) ñîõðàíÿþòñÿ.

Òîãäà ìîäåëü M áåç àðáèòðàæíàÿ è çàâåðøåííàÿ.

Äîêàçàòåëüñòâî

Ðåøåíèå ηt óðàâíåíèÿ (À.1) îïðåäåëÿåòñÿ êàê

ηt = (ΓZt )−1yt ∀ t ∈ [0;T ]

Çäåñü, ΓZt = {γjkt }j,k=1,...,n ÿâëÿåòñÿ (íååäèíñòâåííîé) ìàòðèöåé Ãðàìà, îñ-

íîâàííîé íà ìíîæåñòâå âåêòîðîâ U j
t (Zt) = Bj

tZt, j = 1, ..., n (Zt ðåøå-

íèå (18)): γjkt = (U j
t (Zt), U

k
t (Zt)) (ñ (·, ·) ñêàëÿðíîå ïðîèçâåäåíèå â Rn); è

yt = (y1t , ..., y
n
t ), 0 ≤ t ≤ T äàííûå ñëåäóþùåé ôîðìóëîé

yjt = ((At − rtI)Zt, U
j
t (Zt)). (A.5)

Ëåãêî ïîêàçàòü (ñì. [6, Ãëàâà 6.2,ñòð. 310]) ÷òî

‖ ηt ‖2≤
(
sup1≤j≤n ‖ Bj

tZt ‖4
)−1
‖ (At−rtI)Zt ‖2

n∑
j=1

‖ Bj
tZt ‖2≤

n

α
‖ (At−rtI) ‖2≤ C

äëÿ ïîñòîÿííîãî Ñ>0 (íå çàâèñÿùåãî îò ω è t) è ñ α = min1≤j≤n{αj}.
Òàêèì îáðàçîì, c ó÷åòîì óñëîâèé âûøå, ηt, 0 ≤ t ≤ T , ðàâíîìåðíî

îãðàíè÷åííîå â (t, ω). Áîëåå òîãî, (N)ñîõðàíÿåòñÿ àâòîìàòè÷åñêè. ×òî è òðå-

áîâàëîñü äîêàçàòü.

Äëÿ çàâåðøåíèÿ ÷àñòè Òåîðåìû 4, îñòàëîñü ïîêàçàòü, ÷òî äëÿ êàæäîé

Mt ñ ìàðòèíãàëüíîé ìåðîé P∗ ñóùåòñâóåò ïðåäñêàçóåìûé Rn-çíà÷íûé ñòîõà-
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ñòè÷åñêèé ïðîöåññ Ht = (H1
t , ..., H

n
t ), 0 ≤ t ≤ T , òàêîé, ÷òî ñòîõàñòè÷åñêèé

èíòåãðàëë
∫ t
0 (Hu, dZu) ÷åòêî îïðåäåëåí è òàêîé, ÷òî

Mt = M0 +

∫ t

0

(Hu, dZu).

Â ýòîì ñëó÷àå, ýêâèâàëåíòíàÿ ìàðòèíãàëüíàÿ ìåðà P*, ââåäåíàÿ ðàíåå,

óíèêàëüíà. Áîëåå òîãî, ðûíîê îïðåäåëåí, çàâåðøåí ñ ó÷åòîì S̃t = Φtx0, Φt =

expGt.

Èç ýòîãî âûâåäåì

ηt = ΓZt ht

äëÿ êàæäîãî t ∈ [0;T ], ãäå ht = (h1t , ..., h
n
t ) è ΓZt ìàòðèöà Ãðàìà äëÿ ñèñòåìû

Uk
t , k = 1, ..., n. Íàêîíåö, ýòî äàåò ñëåäóþùåå âûðàæåíèå äëÿ ïîñëåäíåãî

èíòåãðàëëà:

It =
n∑

i,j=1

∫ t

0

n∑
m=1

hmu (Um
u )i

n∑
l=1

hlu(U
l
u)i

n∑
k=1

(Uk
t )i(U

k
t )jdt

=
n∑
k=1

∫ t

0

(
n∑

m=1

γkmu hmu

)(
n∑
l=1

γklu h
l
u

)
, 0 ≤ t ≤ T,

ãäå γkmt = γmkt ïðîñòðàíñòâî ñèììåòðè÷íûõ íåñèíãóëÿðíûõ (äëÿ êàæäîãî

t ∈ [0;T ]) ìàòðèö Ãðàìà ΓZt . Ïî ïîñëåäíåé âûêëàäêå âèäèì

It =

∫ t

0

‖ ΓZuhu ‖2 du =

∫ t

0

‖ ηu ‖2 du.

ýòîò ïðîöåññ ÿâëÿåòñÿ íåïðåðûâíûì; ñëåäîâàòåëüíî, ïî ðàíåå âûâåäåííîìó,

÷àñòè÷íî èíòåãðèðóåì ïîä P ∗. ×òî è òðåáîâàëîñü äîêàçàòü.

dSt = rtStdt+
n∑
j=1

Bj
tStdβ

j∗
t . (22)
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ÇÀÊËÞ×ÅÍÈÅ

Â ðåçóëüòàòå ýòîé ðàáîòû ìû ðàçîáðàëè ìîäåëü ðûíêà, âïåðâûå ïîÿâèâ-

øóþñÿ â [1], íàñëåäóþùóþ èçâåñòíóþ ìíîãîìåðíóþ ìîäåëü Áëýêà-Øîóëçà

(ñì. [2-4,5] è ññûëêè â íèõ) äëÿ ñëó÷àÿ, êîãäà öåíû àêòèâîâ êîððåëèðóþò íå

òîëüêî ñ îøèáêàìè, íî è ìåæäó ñîáîé.

Ìû ðàññìîòðåëè ñëó÷àè, êîãäà öåíû íà ðûíêå àêöèé îòäåëüíûõ êîìïà-

íèé âëèÿþò äðóã íà äðóãà íå òîëüêî ðûíî÷íûìè íåèçâåñòíûìè (êîòîðûå èñ-

ïîëüçóþòñÿ êàê îñíîâíûå ïåðåìåííûå â ìíîãîìåðíîé ìîäåëè Áëýêà-Øîóëçà),

íî òàêæå ìíîãèìè ýêîíîìè÷åñêèìè ôàêòîðàìè; íàïðèìåð, ó êîìïàíèé âîç-

ìîæåí îäèí è òîò æå êîíå÷íûé ðûíîê ïîòðåáèòåëåé èëè ðûíîê ðåñóðñîâ, èëè

îíè ïðèíàäëåæàò ê ñìåæíûì îòðàñëÿì è âçàèìíî âëèÿþò äðóã íà äðóãà.

Â ýòîé ìîäåëè öåíû ðèñêîâàííûõ àêòèâîâ (ïî ïðåäïîëîæåíèþ) óäîâëå-

òâîðÿþò òðåáîâàíèÿì îáùèõ ìíîãîìåðíûõ ëèíåéíûõ ñòîõàñòè÷åñêèõ äèô-

ôåðåíöèàëüíûõ óðàâíåíèé ñ ìóëüòèïëèêàòèâíîé ïîãðåøíîñòüþ. Òàêèå óðàâ-

íåíèÿ ðàñøèðÿþò ìíîãîìåðíóþ ìîäåëü Áëýêà-Øîóëçà è ñâîäÿòñÿ ê íåé â

ñëó÷àå, êîãäà ñîîòâåòñòâóþùèå êîýôôèöèåíòû îáðàçóþò äèàãîíàëüíóþ ìàò-

ðèöó. Â ýòîì ñëó÷àå íàëè÷èå íåíóëåâûõ âíå-äèàãîíàëüíûõ ýëåìåíòîâ (êîýô-

ôèöèåíòîâ äèôôóçèè, èíà÷å - ìàòðèöû âîëàòèëüíîñòè) ïîçâîëÿåò îõâàòèòü

íåêîòîðûå èíòåðåñíûå ïðèëîæåíèÿ, íàïðèìåð: âîçìîæíîå áàíêðîòñòâî äëÿ

íåêîòîðîé êîìïàíèè, ÷üè àêöèè ïðîäàþòñÿ íà ðûíêå (ñëó÷àé, êîãäà ñîîòâåò-

ñòâóþùèå öåíû àêöèé ìîãóò äîñ÷èòü íóëÿ è íèêîãäà íå îêóïÿòñÿ).

Â ðàáîòå äîñòèãíóòû ñëåäóþùèå ðåçóëüòàòû: â ãëàâå 1 ìû ïðèâåëè íåêî-

òîðûé òåîðåòè÷åñêèé ìàòåðèàë (çàèìñòâîâàííûé èç êíèãè [6] ), èñïîëüçóåìûé

â äàëüíåéøèõ ìàòåìàòè÷åñêèõ ðàññóæäåíèÿõ, à êîíêðåòíåå âûâîä, îáîñíîâà-

íèå èñïîëüçóåìûõ â ðàáîòå ôîðìóë Èòî.

Â ãëàâå 2 ìû îïèñàëè ìîäåëü ðûíêà â äåòàëÿõ. À òàêæå ïîêàçàëè, êàê

îíà ñâîäèòñÿ ê ìíîãîìåðíîé ìîäåëè Áëýêà-Øîóëçà â ñïåöèàëüíîì "äèàãî-

íàëüíîì"ñëó÷àå.

Â ãëàâå 3 ìû îïèñàëè ÿâíûå ðåøåíèÿ äëÿ óðàâíåíèé öåí íà àêöèè â ñëå-

äóþùèõ ñëó÷àÿõ: â "Àáåëåâîì"ñëó÷àå è â "ðàçðåøèìîì ñëó÷àå". Ïîêàçàëè,

÷òî ðåøåíèå îñíîâíîãî óðàâíåíèÿ äëÿ ýâîëþöèè öåí íà àêöèè ìîæåò áûòü

ïîñòðîåíî ñ ïîìîùüþ íåêîòîðîãî èòåðàöèîííîãî ìåòîäà.

Ìàòåðèàë ãëàâ 2 è 3 ïðåäñòàâëÿë ñîáîé äåòàëèçèðîâàííîå èçëîæåíèå

ìàòåðèàëà ñòàòüè [10].
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Â ãëàâå 4 ðàññìàòðåëè ïîñòðîåíèå ìîäåëè ðûíêà ñî âçàèìîäåéñòâóþùè-

ìè àêöèÿìè. Mîäåëü ðûíêà, íàñëåäóþùóþ èçâåñòíóþ ìíîãîìåðíóþ ìîäåëü

Áëýêà-Øîóëçà äëÿ ñëó÷àÿ, êîãäà öåíû àêòèâîâ âçàèìîäåéñòâóþò íå òîëüêî

ñî ñòàíäàðòíûìè ðåãðåññîðàìè, íî è ìåæäó ñîáîé.

Âûïîëíåíî ïîñòðîåíèå ðûíêà ñ äâóìÿ âçàèìîäåéñòâóþùèìè àêöèÿìè.

Âûïîëíåíî ïîñòðîåíèå óñëîâèé ñóùåñòâîâàíèÿ ìîäåëè ðûíêà ñ òðåìÿ âçàè-

ìîäåéñòâóþùèìè àêöèÿìè è ñàìîé ìîäåëè.

Ïðèâåäåí ïðîöåññ ðàçðàáîòêè ïðîãðàììíîãî îáåñïå÷åíèÿ, ïîçâîëÿþùå-

ãî ïðîãíîçèðîâàòü ïîâåäåíèÿ òð¼õ âçàèìîäåéñòâóþùèõ àêöèé (îñíîâûâàÿñü

íà ìàòåðèàëàõ èç èñòî÷íèêà [26]).
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