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ВВЕДЕНИЕ 

Задачи оптимального управления на конечном полуинтервале времени 

возникают при рассмотрении динамических моделей оптимального распре-

деления ресурсов. Часто такие задачи связывают с исследованием процессов 

экономического роста. Этим обусловлено их название — задачи оптимально-

го экономического роста. [1] 

Максимизируемый функционал полезности в задачах оптимального 

экономического роста имеет специальный вид.  

Он задается несобственным интегралом, содержащим экспоненциальный 

дисконтирующий множитель [2]. 

Целью данной работы является: 

1. Изучение модели экономического роста предприятия односекторной 

экономики с ограниченным горизонтом управления. 

2. Получение необходимых условий оптимальности управления в одной 

задаче экономического роста. 

3. Численное решение поставленной задачи по сформулированному 

алгоритму [3-5]. 

Практическая значимость проделанной работы состоит в написании 

программы, считающей оптимальное управление, оптимальную траекторию, 

интегральный критерий качества в одной задаче экономического роста на 

ограниченном интервале времени с ограничением на фондовооруженность 

методом сформулированного алгоритма [6-7]. 

Основные результаты магистерской работы докладывались и 

обсуждались на следующих конференциях: 

1. Всероссийская студенческая научная конференция «Экономика и 

управление: проблемы, тенденции, перспективы» (Саратов, Апрель 2016) 

[31]; 

2. V Международная молодежная научно-практическая конференция 

«Математическое и компьютерное моделирование в экономике, страховании, 

и управлении рисками» (Саратов, Ноябрь 2016) [32]. 
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КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 

Магистерская работа состоит из введения, двух теоретических и одной 

практической главы, заключения, приложения и списка использованных 

источников. 

В первой главе рассматривается постановка задачи экономического роста 

– неоклассическая модель, вводятся элементы теории оптимального 

управления (функционал и его оптимизация), исследование задач на 

экстремум, линейная система с фазовыми ограничениями, и наконец метод 

Дубовицкого-Милютина [8-10]. 

Неоклассическая модель оптимального экономического роста описывает 

замкнутую экономику, производящую в каждый момент времени     един-

ственный однородный продукт (капитал) со скоростью Y(t) > 0. В замкнутой 

экономике произведенный продукт либо инвестируется в основные 

производственные фонды (капитал), либо потребляется. В каждый момент 

времени t величина Y(t) является функцией текущих значений капитала K(t) 

> 0 и трудовых ресурсов L(t )  >  0 [3]. Следовательно, 

 ( )   ( ( )  ( ))           

 

Функция F называется производственной функцией. Относительно 

производственной функции F предполагается, что она определена и 

непрерывна на положительном множестве 

  {(   )            }                                   (   ) 

дважды непрерывно дифференцируема и удовлетворяет следующим 

"неоклассическим" условиям для всех K > 0, L > 0: 
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Также предполагается, что F положительно однородная [11-13], т.е. 

 F(λK, λL) = λF(K, L)         λ > 0,   K > 0,   L > 0.    (1.7) 

Рассмотрим систему дифференциальных уравнений: 

{
  
 

  
 

   

  
   (                 ) 

   

  
   (                 ) 

 
   

  
   (                 ) 

                                                        (    ) 

Здесь в правых частях уравнений записаны функции f1, f2,..., fn от     

  переменных, которые определяют закон изменения производных фазовых 

переменных             

Для того, чтобы сформулировать задачу оптимального управления, необ-

ходимо задать условие, которое позволяет отличать друг от друга более и 

менее выгодные решения данной задачи. Для этой цели служит критерий 

оптимальности (критерий качества управления): 

 ( )  ∫   (    ( )     ( )   ( )     ( ))  
 

  

                                           (    ) 

где   (    ( )     ( )   ( )     ( )) — фиксированная функция       

переменных. 

Таким образом, задача оптимального управления для системы диффе-
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ренциальных уравнений (1.24) заключается в максимизации интегрального 

функционала (1.25) на множестве всех допустимых управлений, переводя-

щих систему (1.24) из заданного начального состояния в заданное конечное. 

С математической точки зрения эта задача является специального вида 

задачей оптимизации интегрального функционала на определенном мно-

жестве функционального пространства кусочно-непрерывных управляющих 

функций. Решением этой задачи является управление (вектор-функция) 

  ( )  (  
 ( )   

 ( )     
 ( )), которое называют оптимальным управлени-

ем. Этому управлению однозначно соответствует определенная траектория 

  ( )  (  
 ( )   

 ( )     
 ( ))  называемая оптимальной траекторией. При 

этом пару векторных функций (  ( )   ( )) называют оптимальным процес-

сом [14-18]. 

Во второй главе рассматривается задача оптимального управления с 

дифференцируемыми фазовыми ограничениями в конечном числе точек, с 

терминальным функционалом на конечном интервале времени, со 

свободным правым концом.  

Доказываются необходимые условия оптимальности управления типа 

принципа максимума в форме максимальной задачи с использованием 

теоремы Дубовицкого-Милютина. Для этой цели строится конус допустимых 

вариаций, соответствующий фазовым ограничениям, конус запрещенных 

вариаций, а также другие конуса. 

Теорема 30.  Пусть ))(),(( tutx


-оптимальная пара задачи (2.14) - (2.17). 

Тогда 

существуют дифференцируемые функции  qjt
j

,0),(  , 
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В третьей главе будет построен алгоритм численного решения, 

использующий полученные уравнения для построения последовательности 

управлений и его обоснование а также сходимость [19]. Результаты теоремы 

служат основой для построения численного алгоритма решения задачи (2.14) 

- (2.17). 

Алгоритм. 

Шаг 1.   
  { }         {         (  )       } [20] 

Шаг 2. {  
 };     

 : 

 ̇ 
     

 (    (  )   )  
      (  )

 (  )
   ( )    

 ̇̃ 
    ̃ 

 (   (  )   ))    (  )    
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Шаг 3. 

             
 ∫     

  

 
( )                                                           (   )  

        
 ( )       ( 

     ))    ( 
      )   

Очевидно, что     , а     
 ( )    

 ( ( ̂ )(    )), и 

Обозначим   ( ) –функция, при которой достигается максимум, 

Введем обозначение:  

  
  ∫     

 
 

 

   

Очевидно, что        
  [22-24] 

Шаг 4. Для каждого   (     найдем  (    )    ( ), такое, что 

выполняется неравенство: 

∫    ( )    (  
     )                 (   )

 

  ( )

 

Где   ( )   (  ( )  ),           (   ) – некоторый параметр, 

необходимый для обоснования алгоритма [25-29]. Существование таких 

  ( )  возможно согласно лемме 2.1 из [3]. 

Шаг 5. Определим для каждого   (     функцию 

  (   )  {
       ( )

       ( )
  [30-32] 

Шаг 6. Выберем   из условия 

  (  (    ))    ( 
 ) [33-35] 

Шаг 7. В случае, если      ,то положим 
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           (   )             

           то  

                  (    )   

Заметим, что задача (3.1) эквивалентна следующей: 

      

∫    
 ( )    

 

 

 

   ( )      

 

Было приведено обоснование данного алгоритма. 

Пусть   (   )   (    (   ))    ( )   (    )  тогда 

   (   )    (   )    ( )    (   )    (   )    ( ) 

Лемма 32. Пусть              определены согласно алгоритма 

Тогда  

  ̅  (       (   ̅             

 ̅     {
  

  
 
      

  
}                  

  (    )      

 (  (   )   (   ))   (     ) 

А также теорема о сходимости  [36-37] 

Теорема 33. Пусть     ̂    где  ̂   (
 

 
)    пусть              ̃    

определены согласно алгоритма 

 (    ̃
  )      

 (  (   )   (   ))   (     )  
 

 
 ̃  (      )       

                



9 
 

ЗАКЛЮЧЕНИЕ 

При написании магистерской работы были рассмотрены и изучены ряд 

вопросов, теорем и лемм, касающихся задачи экономического роста и теории 

оптимального управления. 

В результате проделанной работы была рассмотрена и изучена модель 

Рамсея экономического роста предприятия односекторной экономики. Также 

введено определение задачи оптимального управления и исследованы задачи 

на экстремум при наличии ограничений. Затем были получены необходимые 

условия оптимальности управления в одной задаче экономического роста 

путем применения метода Дубовицкого-Милютина. Конечным результатом 

работы стало построение алгоритма численного решения задачи 

оптимального роста предприятия односекторной экономики и доказано его 

обоснование, сходимость. По результатам работы численного алгоритма 

была составлена задача в среде java с графическим интерфейсом. 

Таким образом, поставленные цели работы можно считать достигнутыми. 
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