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ВВЕДЕНИЕ

Дипломная работа посвящена анализу распространения нелинейных волн
деформаций в упругих физически нелинейных соосных цилиндрических обо-
лочках, содержащих вязкую несжимаемую жидкость между ними. Волновые
процессы в упругой цилиндрической оболочке без взаимодействия с жид-
костью ранее исследованы с позиций теории солитонов. Наличие жидкости
потребовало разработки новой математической модели и компьютерного мо-
делирования процессов, происходящих в рассматриваемой системе.

Приведение систем алгебраических, дифференциальных и разностных
уравнений к канонической форме, называемой базисом Грёбнера, представля-
ет собой качественный аналитический метод исследования соответствующих
математических моделей.

В частности, при поиске частных решений дифференциальных уравне-
ний методом неопределённых коэффициентов возникают переопределённые
системы алгебраических уравнений. Построение базиса Грёбнера позволяет
проверить совместность системы, определить, обладает ли система конечным
или бесконечным числом решений, а в ряде случаев построить решения в яв-
ном виде.

Не для всех моделей, описываемых уравнениями в частных производных,
удаётся построить аналитические решения и в этом случае для их исследова-
ния можно применять численные эксперименты на соответствующих разност-
ных схемах. Так, для построения разностных схем из первоначально задан-
ных базовых разностных соотношений, аппроксимирующих исходную систе-
му дифференциальных уравнений, строится базис Грёбнера разностного иде-
ала. Из этого базиса, иногда в нелинейном и всегда в линейном случае, можно
извлечь разностную схему, которую невозможно построить традиционными
методами генерации разностных схем. Зачастую такие разностные схемы об-
ладают уникальными свойствами, хорошо передающими физику процессов,
описываемых исходными дифференциальными уравнениями.

Кроме того, знание базиса Грёбнера даёт возможность проверить совмест-
ность исходных разностных соотношений, определить произвол в решении,
посчитав полином Гильберта, и, применяя специальный вид допустимого упо-
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рядочения при его построении, получить другое представление первоначаль-
ных разностных соотношений.

В представленной работе данная техника будет использована, в качестве
примера, для анализа распространения нелинейных волн деформаций в упру-
гих физически нелинейных соосных цилиндрических оболочках, содержащих
вязкую несжимаемую жидкость между ними.

В первой части дан вывод основных уравнений построенной математи-
ческой модели. Во второй части приведены точные решения для некоторых
наборов параметров входящих в исследуемое уравнение, а также выведены
некоторые свойства. Третья часть посвящена компьютерному моделирова-
нию. В ней построена разностная схема и приведена ее проверка на точных
решениях и построены решения с учетом влияния жидкости на оболочку.
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1 Построение математической модели

Рассмотрим бесконечно длинные соосные упругие цилиндрические обо-
лочки, между которыми находится вязкая несжимаемая жидкость. Уравне-
ния движения вязкой несжимаемой жидкости и уравнения неразрывности в
цилиндрической системе координат r, ϑ, x записываются в случае осесиммет-
ричного течения в виде

∂Vr
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+
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(1.1)

На границах с оболочками выполняются условия прилипания жидкости

Vr = −∂W
(i)

∂t
, Vx =

∂U (i)

∂t
при r = Ri −W (i). (1.2)

Здесь t – время; Vr, Vx – проекции вектора скорости жидкости на оси цилин-
дрической системы координат; p – давление; ρ – плотность; ν – кинематиче-
ский коэффициент вязкости; U (i) – продольное упругое перемещение оболо-
чек по оси x; W (i) – прогиб, положительный к центру кривизны оболочки;
R1 – внутренний радиус внешней оболочки; R2 – внешний радиус внутрен-
ней оболочки (R1 = R2 + δ); δ – толщина слоя жидкости в кольцевом сечении
трубы; i = 1 относится к внешней, а i = 2 – к внутренней оболочке.

Записывая уравнения движения элемента цилиндрических оболочек в
перемещениях для модели Кирхгофа-Ляве, считаем материал нелинейно-
упругим с кубической зависимостью интенсивности напряжений σ1 от ин-
тенсивности деформаций e1

σ1 = Ee1 +me3
1. (1.3)

Здесь E – модуль Юнга; m – константа материала, определяемая из опытов
на растяжение или сжатие.
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Кроме этого учтем конструкционное демпфирование в материале оболоч-
ки, характеризуемое величиной, пропорциональной ∂W (i)/∂t, добавляемой к
Даламберовой силе инерции.

Уравнения динамики физически нелинейных оболочек с учетом (1.3) за-
писываются в виде
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Здесь ε(i)
g – коэффициент демпфирования; ρ(i)

0 – плотность материала обо-
лочки; µ(i)

0 – коэффициент Пуассона; R(i) – радиусы срединной поверхности
оболочек; h(i)

0 – толщины оболочек
(
h

(1)
0 /2 = R(1) −R1, h

(2)
0 /2 = R2 −R(2)

)
;

c
(i)
0 – скорость звука в материале оболочки; q(i)

x , qn – напряжения со стороны
жидкости, находящейся внутри кольцевого сечения.

Принимая за характерную длину – длину волны l, и считая, что соос-
ные оболочки изготовлены из одного материала, то есть, опуская индекс i
у E,m, ρ0, µ0, εg, перейдем к безразмерным переменным для исследования
уравнений (1.4). Проводя гомоздкие вычисления окончательно получим

ϕ(i)
t + ϕ(i)

ηηη + 6ϕ(i)2
ϕ(i)

η − σgϕ(i)
ηη − (ϕ(1) − ϕ(2))(−1)i = 0. (1.5)
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2 Точные решения и некоторые аналитические оценки

Новые решения методом неопределённых коэффициентов для системы
уравнений (1.5) будем искать в виде:

θ = k(η + η0)− ωt,

ϕ(i) =
eθ

a(i)e2θ + b(i)eθ + c(i)
+ d(i).

После подстановки на 11 переменных a(i), b(i), c(i), d(i), k, ω, σg получим доста-
точно громоздкую систему из 22 уравнений для исследования которой, по-
сторен базис Грёбнера.

В результате имеем только одно нетривиальное решение:

θ = k(η + η0)−
(
k3 +

3

2
b2k5

)
t,

ϕ(i) =
eθ

1
4
b2k2+1
ck2 e2θ + beθ + c

+
1

2
bk2.

(2.1)

Здесь b, c, k произвольные постоянные. Остальные нетривиальные решения,
имеют мнимую часть и должны быть отброшены как не физичные.

Эти точные решения будут использованы для проверки разностных схем,
которые будут получены в разделе 3.

Обозначим через C(i)
+ , C

(i)
− постоянные значения, к которым асимптоти-

чески стремятся функции начального условия при η → +∞ и η → −∞
соответственно:

ϕ(i) → C
(i)
± ,

(
∂ϕ(i)

∂η
,
∂2ϕ(i)

∂η2
,
∂3ϕ(i)

∂η3
→ 0

)
, η → ±∞, t = 0; i = 1, 2. (2.2)
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Из уравнений (1.5) при σg = 0 с начальными условиями (2.2) следуют
нестационарные граничные условия на бесконечности

ϕ(1) → ϕ
(1)
±∞ (t) ≡ 1

2

(
C

(1)
± + C

(2)
±

)
+ 1

2

(
C
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±
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ϕ(2) → ϕ
(2)
±∞ (t) ≡ 1

2

(
C
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±
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2
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)
, η → ±∞, t ≥ 0; i = 1, 2.

(2.3)

Умножим первое и второе уравнения (1.5) на искомые функции ϕ(1) и ϕ(2)

соответственно и приведем уравнения к виду

1
2
∂
∂tϕ

(1)2 + ∂
∂η

[
2ϕ(1)3 + ϕ∂2ϕ(1)

∂η2 −
1
2

(
∂ϕ(1)

∂η

)2
]

+ ϕ(1)
(
ϕ(1) − ϕ(2)

)
= 0,

1
2
∂
∂tϕ

(2)2 + ∂
∂η

[
2ϕ(2)3 + ϕ∂2ϕ(2)

∂η2 −
1
2

(
∂ϕ(2)

∂η

)2
]

+ ϕ(2)
(
ϕ(2) − ϕ(1)

)
= 0.

(2.4)

Снесем граничные условия из бесконечности на концы отрезка [a, b] и
введем норму функций на временном слое

‖ϕ‖2 =

∫ b

a

ϕ2 (η, t) dη. (2.5)

Взяв интегралы от уравнений (2.4) в пределах a, b и учитывая граничные
условия (2.3), получим дифференциальные соотношения для явной зависи-
мости от времени для разности квадратов норм искомых функций:∥∥ϕ(1)

∥∥2 −
∥∥ϕ(2)

∥∥2
= e−2t

[
D0 − 3 t

(
A2

+B+ − A2
−B−

)
−

− 1
4

(
B3

+ − B3
−
) (

1− e−4t
)]
,

D0 =
(∥∥ϕ(1)

∥∥2 −
∥∥ϕ(2)

∥∥2
)
t=0

,

A± = C
(1)
± + C

(2)
± ,

B± = C
(1)
± − C

(2)
± .

(2.6)

Оценка (2.6) может быть использована для интегрального контроля точности
численного решения рассматриваемой задачи.
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3 Компьтерное моделирование

Если исходные уравнения будут содержать производные выше первого по-
рядка, то будет необходимо воспользоваться интегро-интерполяционным ме-
тодом, значительным недостатком которого является отход от работы только
с интегральными соотношениями и прямая замена производных их конечны-
ми разностями. Если на этом шаге добавить интегральные соотношения, ко-
торые связывают искомые функции и их производные, а далее использовать
алгоритм Бухбергера для построения базисов Грёбнера или инволютивный
алгоритм, то получатся соотношения, которые связывают только искомые
функции.

Уравнение (1.5) в интегральной форме записывается в виде∮
∂Ω

(
−3σ0φ

(i)2 − φ(i)
ηη ∓ 2σ1φ

(i)3
)
dt+φ(i) dη−

∫∫
Ω

(
φ(1) − φ(2)

)
(−1)i dt dη = 0

(3.1)
для любой области Ω. Чтобы перейти к дискретной формулировке, сопоста-
вим u(i)n

j = φ(i)(tn, ηj) и в качестве базового контура выберем контур, изобра-
женный на рис. 3.1.

j j + 1 j + 2

n

n+ 1

Рисунок 3.1 — Базовый контур для уравнения (3.1)

Необходимо добавить интегральные соотношения∫ ηj+1

ηj

u(i)
η dη = u(i)(t, ηj+1)− u(i)(t, ηj),∫ ηj+1

ηj

u(i)
ηη dη = u(i)

η(t, ηj+1)− u(i)
η(t, ηj).

(3.2)

Используем формулу трапеций для интегрирования по времени и по
четным производным по η и формулу среднего значения для интегрирования
по нечетным производным по η, и полагаем tn+1 − tn = τ , ηj+1 − ηj = h.
Тогда соотношения (3.1),(3.2) перепишутся в виде
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(
−3σ0

(
u(i)2n

j + u(i)2n+1

j − u(i)2n

j+2 − u(i)2n+1

j+2

)
−

−
(
u(i)

ηη
n

j + u(i)
ηη
n+1

j − u(i)
ηη
n

j+2 − u
(i)
ηη
n+1

j+2

)
∓

∓ 2σ1

(
u(i)3n

j + u(i)3n+1

j − u(i)3n

j+2 − u(i)3n+1

j+2

))
· τ

2
+ (u(i)n+1

j+1 − u(i)n

j+1) · 2h−

− (u(1)n+1

j+1 + u(1)n

j+1 − u(2)n+1

j+1 + u(2)n

j+1)(−1)i · hτ = 0,

(u(i)
η
n

j+1 + u(i)
η
n

j ) ·
h

2
= u(i)n

j+1 − u(i)n

j ,

u(i)
ηη
n

j+1 · 2h = u(i)
η
n

j+2 − u
(i)
η
n

j .

(3.3)
Вводя сеточные операторы сдвига θt, θη по переменным t, η соотвественно,
запишем уравнения в операторной форме:

−(1 + θt − θ2
η − θtθ2

η) ◦ (3σ0u
(i)2

+ u(i)
ηη ∓ 2σ1u

(i)3
) · τ

2
+

+ (θηθt − θη) ◦ u(i) · 2h− (θηθt + θη) ◦ (u(1) − u(2))(−1)i · hτ = 0,

(θη + 1) ◦ u(i)
η ·
h

2
= (θη − 1) ◦ u(i),

θη ◦ u(i)
ηη · 2h = (θ2

η − 1) ◦ u(i)
η.

Выбирая допустимое лексикографическое упорядочение сначала по функ-
циям u(1)

ηη � u(2)
ηη � u(1)

η � u(2)
η � u(1) � u(2), затем по переменным θt � θη

можно построить инволютивный базис или базис Грёбнера. В результате по-
лучим, в качестве отдельных элементов базиса Грёбнера, следующие раз-
ностные схемы для уравнений (1.5), аналогичные схеме Кранка-Николсона
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для уравнения теплопроводности

u(i)n+1
j − u(i)n

j

τ
+ 3σ0

(u(i)2n+1

j+1 − u(i)2n+1

j−1 ) + (u(i)2n

j+1 − u(i)2n

j−1)

4h
+

+
(u(i)n+1

j+2 − 2u(i)n+1
j+1 + 2u(i)n+1

j−1 − u(i)n+1
j−2 ) + (u(i)n

j+2 − 2u(i)n
j+1 + 2u(i)n

j−1 − u(i)n
j−2)

4h3

∓ 2σ1

(u(i)3n+1

j+1 − u(i)3n+1

j−1 ) + (u(i)3n

j+1 − u(i)3n

j−1)

4h
−

−
u(1)n+1

j + u(1)n
j − u(2)n+1

j − u(2)n
j

2
(−1)i = 0.

(3.4)
Полученные неявные разностные схемы имею квадратичную и кубиче-

скую нелинейность для следующего временного слоя. При построении реше-
ния использована следующая линеаризация

v3
k+1 = v3

k+1 − v3
k + v3

k = (vk+1 − vk)(v2
k+1 + vk+1vk + v2

k) + v3
k ≈ vk+1 · 3v2

k − 2v3
k.

v2
k+1 = v2

k+1 − v2
k + v2

k = (vk+1 − vk)(vk+1 + vk) + v2
k ≈ vk+1 · 2vk − v2

k.

Шаг по времени t брался равным половине шага по переменной η. Программа
расчёта была написана на языке Python с использованием пакета SciPy.

Проведенное моделирование позволяет сделать вывод, что рассматрива-
емая механическая система начинает вести себя как единый трехслойный
пакет с двумя несущими слоями (внешняя и внутренняя оболочки), по ко-
торым распространяются волны деформаций, и заполнителя – слоя вязкой
несжимаемой жидкости.

Проведенное моделирование с использованием компьютерной алгебры по-
казало особенности поведения волн деформаций в геометрически и физиче-
ски нелинейных соосных упругих цилиндрических оболочках, содержащих
несжимаемую вязкую жидкость между ними.

Использование техники базисов Грёбнера для построения разностной схе-
мы при численном решении задачи Коши для системы двух нелинейных урав-
нений в частных производных третьего порядка по пространственной пере-
менной позволило получить результат расчета без осцилляций, вызываемых
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Рисунок 3.2 — Диаграмма действий UML программы

численной реализацией. Численная схема была протестирована на точном
решении при отсутствии жидкости.

Полученный расчет позволил сделать выводы о влиянии несжимаемой
вязкой жидкости на поведение нелинейной волны деформаций в соосных
оболочках. Наличие волны деформаций во внешней оболочке приводит к воз-
никновению волны деформаций во внутренней оболочке, которой не было в
начальный момент времени, и происходит «перекачка энергии» (через слой
жидкости) от внешней оболочки к внутренней, которая сопровождается немо-
нотонным падением амплитуды волны во внешней оболочке, и, как следствие,
немонотонным снижением скорости её распространения. При этом во внут-
ренней оболочке происходит немонотонное увеличение амплитуды. Вслед-
ствие колебаний амплитуд и скоростей, с течением времени их скорости и
амплитуды выравниваются. Эти амплитуды в два раза меньше исходной ам-
плитуды для случая двух соосных оболочек.
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ЗАКЛЮЧЕНИЕ

Проведенное моделирование позволяет сделать вывод, что рассматрива-
емая механическая система начинает вести себя как единый трёхслойный
пакет с двумя несущими слоями (внешняя и внутренняя оболочки), по ко-
торым распространяются волны деформации, и заполнителя – слоя вязкой
несжимаемой жидкости.

Проведённое компьютерное исследование новой математической модели
с использованием теории базисов Грёбнера позволило найти новое аналити-
ческое решение МКдВ, а также построить качественную разностную схему,
которая по построению соответствует исходной непрерывной модели.

Следует отметить, что все результаты справедливы для оболочки очень
малого радиуса, а частности для мелких кровеносных сосудов.
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