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ВВЕДЕНИЕ 

 

Представленная бакалаврская работа посвящена выводу разностного ана-

лога уравнения Пуассона для давления в несжимаемой идеальной тяжелой жид-

кости. Выбрана нерегулярная треугольная сетка, позволяющая рассчитывать 

сколь угодно сложные с точки зрения геометрии области плоского течения. 

Вначале приводится вывод аналогичного уравнения для регулярной сетки, 

полученный моим научным руководителем [2]. Этот вывод более простой, но он 

показывает предложенную методику, с помощью которой я осуществил вывод 

разностного аналога уравнения Пуассона на нерегулярной сетке. 

Большое внимание уделено постановке граничных условий для полученного 

разностного уравнения Пуассона. 

Задача триангуляции, то есть покрытие треугольниками заданной области, в 

работе не ставилась. Эта задача интересна сама по себе, но она успешно решается 

и стала техническим элементом во многих приложениях. 

Полученные в бакалаврской работе результаты могут быть использованы, 

например, в методе Давыдова (крупных частиц) [4] для расчета давления в 

произвольной области течения идеальной несжимаемой тяжелой жидкости. 
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 1   Общая характеристика работы 

1.1 Актуальность работы 

 

   Различные течения широко распространены в природе и человеческой 

практике, они порождают многочисленные проблемы, которые необходимо 

решать, и, значит, они нуждаются в адекватных математических моделях. 

       К числу таких моделей относится метод Давыдова (крупных частиц) [4]. 

В случае несжимаемой жидкости необходимо получить разностный аналог 

уравнения Пуассона для давления, сохранить соленоидальность течения в 

численном решении, причем решить эти проблемы как в случае регулярной сетки, 

так и в случае нерегулярной (например, треугольной) сетки. Без такого подхода 

несжимаемое течение в численных расчетах, как показывают исследования [1], 

быстро вырождается и становится сжимаемым. Необходимо также учитывать 

сложную границу расчетной области. Эти две проблемы (сохранение 

соленоидальности и учет произвольной границы расчетной области) делают 

задачу, которую я пытаюсь решить, актуальной в рамках моделирования 

двумерных течений нестационарной невязкой несжимаемой тяжелой жидкости. 

 

 

1.2 Цели и задачи работы 

   Цель номер один: вывести разностный аналог уравнения Пуассона для 

давления в численном расчете течения невязкой несжимаемой тяжелой жидкости 

с учетом сохранения соленоидальности методом Давыдова. 

       Цель номер два: поставить граничные условия на произвольной границе 

для решения краевой задачи для этого уравнения Пуассона. 

   Таким образом, краевая задача для давления будет полностью 

сформулирована для её численного решения на нерегулярной (треугольной) 

сетке. 

       Для достижения этих целей должны быть решены следующие задачи: 
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   На основе эйлерова этапа в методе Давыдова [4] получить выражения с 

полуцелыми индексами для компонент вектора скорости «с волнами», используя 

аппроксимацию частных производных на треугольной сетке, и подставить в 

выражение для дивергенции вектора скорости. Из равенства нулю этой 

дивергенции и получается выполнение условия соленоидальности и 

одновременно выводится разностная десятиточечная схема для внутренних 

узлов нерегулярной сетки. 

    Для условия на границе дискретизируется условие «непротекания» на 

жесткой стенке и условие для давления на свободной поверхности. 

Заметим, что задача Пуассона должна решаться на каждом шаге по времени 

в методе Давыдова. Три этапа метода Давыдова на нерегулярной сетке в данной 

бакалаврской работе не исследуются, но один из них, а именно, эйлеров этап, 

используется для получения разностного аналога уравнения Пуассона. 

1.3 Научная новизна 

   Нерегулярная сетка позволяет рассчитывать течения со сложной границей, 

что расширяет класс решаемых задач. Логика и арифметика расчетов при этом 

усложняется. 

1.4 Достоверность полученных результатов 

   Отдельные компоненты вывода разностного уравнения Пуассона проверя-

лись с помощью sympy - модуля символьной математики языка python. В этом 

модуле есть функции, преобразующие символьные математические выражения, 

приводящие подобные члены и упрощающие эти выражения. 

1.5 Практическая значимость работы 

   С добавлением разностного уравнения Пуассона на нерегулярной 

(треугольной) сетке метод Давыдова приобретает законченный вид в рамках 

расчета течения двумерной нестационарной несжимаемой невязкой тяжелой 

жидкости с учетом произвольной границы (жесткое тело и свободная 

поверхность). 
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2   Содержание бакалаврской работы 

2.1 Постановка задачи 

 

Течение нестационарной несжимаемой невязкой жидкости для случая 

двух пространственных переменных моделируется путем решения краевых 

задач для системы уравнений Эйлера и уравнения неразрывности: 

   

   

2

0

2

0

1
0

1

0

y

u uvu p

t x y x

vuvv p
F

t x y y

u v

x y





   
    
   


 

   
   

  
 

 
  

Здесь p – давление, ,u v – компоненты вектора скорости, yF
– сила тяжести 

yF g 
, 0 – постоянная плотность, g – ускорение свободного падения. 

На теле ставится условие непротекания (нормальная компонента скорости 

равна нулю), и на свободной поверхности давление равно атмосферному 

давлению. 

Из исходной системы можно получить уравнение Пуассона для давления 

[1], которое должно решаться на каждом шаге по времени. Однако полученные 

уравнения будут справедливы в дифференциальной форме и не годятся для 

численных расчетов так как нет инструмента для того, чтобы выполнялось 

равенство нулю дивергенции скорости. Если не выполняется разностное 

уравнение для дивергенции в каждый момент времени, то течение быстро 

вырождается и становится сжимаемым [1]. 

Для решения подобных задач удобно использовать метод Давыдова [4]. 

Нас интересует эйлеров этап метода Давыдова, из формул которого мы 

намерены получить разностный аналог уравнения Пуассона для давления для 

случая нерегулярной (треугольной) сетки и одновременно автоматически 

выполнять на каждом шаге по времени условие соленоидальности как в 

дифференциальном, так и в разностном виде. 

Выпишем укороченные уравнения эйлерова этапа: 

𝜕𝑢

𝜕𝑡
+

1

ρ0

𝜕𝑝

𝜕𝑥
= 0 

𝜕𝑣

𝜕𝑡
+

1

ρ0

𝜕𝑝

𝜕𝑦
= 𝐹𝑦 

Эти два уравнения плюс уравнение неразрывности лежат в основе 
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получения дискретного уравнения Пуассона на нерегулярной сетке. 

 

2.2   Вывод разностного аналога уравнения Пуассона для давления 

Этот раздел является основным в работе. Здесь выводится разностный 

аналог уравнения Пуассона для давления на нерегулярной (треугольной) сетке. 

Выпишем разностные аппроксимации последних двух уравнений 

предыдущего пункта, используя методику из [3]:  

        
        

2 1 2 1 3 2 3 2 1 3 1 3

2 1 2 1 3 2 3 2 1 3 1 3

n
k k k k k k k k k k k k

i k k k k k k k k k k k k

P P y y P P y y P P y yP

x x x y y x x y y x x y y

            
          
   (1) 

        
        

2 1 2 1 3 2 3 2 1 3 1 3

2 1 2 1 3 2 3 2 1 3 1 3

n

k k k k k k k k k k k k

i k k k k k k k k k k k k

P P x x P P x x P P x xP

y x x y y x x y y x x y y

         
  
              (2) 

где индекс i – номер треугольника, для которого производятся расчеты на 

данной итерации алгоритма, 𝑘1 , 𝑘2  ,  𝑘3  - номера треугольников, соседних с 

треугольником с номером i, 
 ,

n nk kx y
 – координаты общей точки треугольника с 

номером i  и треугольников с номерами nk  и 1nk   (рисунок 1). Обход соседних 

треугольников осуществляется против часовой стрелки. Компоненты вектора 

скорости со значком  ~ (тильда) сверху — результаты эйлерова этапа. 

Алгоритм триангуляции для каждого внутреннего треугольника даёт три 

соседних треугольника. У треугольника на границе одна из сторон не граничит с 

«соседом» («соседа» просто нет) и является частью этой границы. 

Формулы (1) и (2) — конечно-разностные аппроксимации частных 

производных от давления  P  по  x  и  y  соответственно. 

Получим формулу для нахождения давления в треугольнике с номером 𝑖. 

Рассмотрим дивергенцию вектора скорости на эйлеровом этапе: 
n

n

i

i

u v
D

x y

  
  

     (3) 

Подставим в (3) соответствующие величины из предыдущих формул.  

Получим: 

        
        

2 1 2 1 3 2 3 2 1 3 1 3

2 1 2 1 3 2 3 2 1 3 1 3

k k k k k k k k k k k kn

i

k k k k k k k k k k k k

u u y y u u y y u u y y
D

x x y y x x y y x x y y

        
  
        
   
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        
        

2 1 2 1 3 2 3 2 1 3 1 3

2 1 2 1 3 2 3 2 1 3 1 3

.
k k k k k k k k k k k k

k k k k k k k k k k k k

v v x x v v x x v v x x

x x y y x x y y x x y y

        
 
        
   

Через 𝛼 обозначим, для удобства записи, следующее выражение 

        
2 1 2 1 3 2 3 2 1 3 1 3k k k k k k k k k k k kx x y y x x y y x x y y         

 

и подставим в полученное уравнение (3) и (4). Тогда 

 
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2 10 0

1 1
n
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k kn
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i
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   
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   
2 1 3 2

2 1 3 2

0

1

n

k k k k

k k k kn

i

i

P P P P
y y y y

x x x x
D

 

             
                                  

 
 
   

   
1 3 2 1

1 3 2 1

0

1

n

k k k k

k k k k

i

P P P P
y y x x

x x y y

 

             
                                
 
  
   

   
3 2 1 3

3 2 1 3

0

1

n

k k k k

k k k k

i

P P P P
x x x x

y y y y

 

              
                                  
 
  
   

 

Далее распишем (
∆𝑃

∆𝑥
)

𝑘𝑛

  и (
∆𝑃

∆𝑦
)

𝑘𝑛

 по формулам (1) и (2) соответственно. 

Для этого рассмотрим для каждого соседнего треугольника 𝑘𝑛, в свою очередь, его 

«соседей». 

У всех треугольников 𝑘𝑛  треугольник с номером 𝑖  является соседним. 

Остальные шесть треугольников назовем следующим образом – для треугольника 

𝑘1 , смежные с ним обозначим индексом 𝜉 , для 𝑘2 –𝜂 , для 𝑘3 – 𝜃  в соответствии с 

рисунком 1. Отсюда и получим формулу для определения давления в  треугольнике 

через девять других треугольников. 

Далее подставим полученные выражения в правую часть 𝐷𝑖
𝑛̃, и приравняем 

его к 0, после чего преобразуем. Получим следующее: 

     
 1 2 2 3 2 1

2 30

i k k k kn

i k k

P y y P y y P y y
D y y

   
 



    
  

 

     
 1 2 2 3 2 1

2 3

i k k k k

k k

P x x P x x P x x
x x

   



    
  

 

     
 2 2 3 3 3 2

3 2

i k k k k

k k

P y y P y y P y y
y y

   



    
  
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     
 2 2 3 3 3 2

3 2

i k k k k

k k

P x x P x x P x x
x x

   



    
  

 

     
 3 2 1 3 1 3

1 3

i k k k k

k k

P y y P y y P y y
y y

   



    
  

 

     
 3 2 1 3 1 3

1 3

i k k k k

k k

P x x P x x P x x
x x

   



    
 

 
Из полученного уравнения выразим 𝑃𝑖: 

2 2 3 3 2 2 3 3 2 2 3 30

1 1 1 1 1 1n

i

i

D P P P P P P

P
L

                  
     

     


      (4) 

где 

      
1 1 3 1 1 3

1
k k k k k kL y y y y x x x x 


      

 

      
2 2 1 2 2 1

1
k k k k k ky y y y x x x x 


      

 

      
3 3 2 3 3 2

1
k k k k k ky y y y x x x x 


     

 

      
2 2 2 3 2 2 3k k k k k ky y y y x x x x        

 

      
3 2 1 2 3 2 1 2 3k k k k k k k ky y y y x x x x      

 

      
2 3 3 1 3 3 1k k k k k ky y y y x x x x        

 

      
3 3 2 3 1 3 2 3 1k k k k k k k ky y y y x x x x      

 

      
2 1 1 2 1 1 2k k k k k ky y y y x x x x        

 

      
3 1 3 1 2 1 3 1 2k k k k k k k ky y y y x x x x      

 

Формула (4) — основной результат бакалаврской работы. 
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ЗАКЛЮЧЕНИЕ 

В бакалаврской работе выведен разностный аналог уравнения Пуассона 

для давления, применяемый при численном анализе нестационарного течения 

двумерной несжимаемой тяжёлой жидкости. Получены результаты как для 

внутренних треугольников, так и для треугольников, находящихся на границе 

расчетной области. Равенство нулю дивергенции скорости выполняется 

автоматически. 
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