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ВВЕДЕНИЕ

Настоящее исследование посвящено анализу распространения нелиней-
ных продольных волн деформаций в цилиндрической оболочке. Содержащих
вязкую несжимаемую жидкость внутри оболочки. Физические свойства обо-
лочки определяются уравнениями линейной квадратичной теории вязкоупру-
гости.

Проблемы распространения волн в вязкоупругих и нелинейных тонко-
стенных конструкциях, в том числе цилиндрических оболочках, без взаимо-
действия с вязкой несжимаемой жидкостью, рассмотрены ранее с позиции
теории солитонов.

Наличие жидкости потребовало разработки новой математической моде-
ли и компьютерного моделирования процессов, происходящих в рассматри-
ваемой системе.

В первом разделе построены математические модели, описывающие по-
ведение волны деформаций в цилиндрической оболочке, содержащей несжи-
маемую вязкую жидкость, в виде нелинейных уравнений в частных произ-
водных, которые обобщают уравнения КдВБ и МКдВБ, содержащих члены,
учитывающие наличие жидкости.

В начале записаны уравнения движения элемента цилиндрической обо-
лочки в перемещениях для модели Кирхгофа-Лява и получены формулы по-
верхностных напряжений со стороны слоя жидкости. Затем записываются
и решаются уравнения динамики оболочки и уравнения движения вязкой
несжимаемой жидкости. Выведено уравнение динамики с учетом наличия
жидкости внутри оболочки. Введены безразмерные переменные и выделены
малые параметры задачи. Выведено основное уравнение, описывающее вол-
ну деформаций в оболочке, содержащую несжимаемую вязкую жидкость, и
записаны полученные аналитически решения этих уравнений для различных
частных случаев.

Во втором разделе получены точные решения для некоторых наборов
параметров входящих в исследуемое уравнение, а также выведены некоторые
аналитические свойства.
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В третьем разделе с помощью техники базисов Грёбнера сгенерированы
разностные схемы для численного исследования моделей для двух оболочек,
полученных в предыдущих главах.

Изложены общие концепции применяемой техники базисов Грёбнера. По-
строены разностные схемы для уравнений КдВБ, МКдВБ и проведено чис-
ленное исследование построенной в первом разделе математической модели
с начальным условием в виде точного решения, с использованием комплекса
программ, разработанных на основе разностной схемы для различного набора
параметров, построенных в первом и втором разделах.

Также приведено описание разработанного на их основе программного
комплекса.
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1 Построение математической модели

Получим уравнения динамики с учётом наличия вязкой несжимаемой
жидкости в цилиндрической оболочке с помощью асимптотических методов
для решения связанной задачи гидроупругости с соответствующими гранич-
ными условиями.

Рассмотрим бесконечно длинную вязкоупругую цилиндрическую оболоч-
ку, внутри которой находится вязкая несжимаемая жидкость.

Уравнения движения вязкой несжимаемой жидкости и уравнение нераз-
рывности в цилиндрической системе координат r, ϑ, x записываются в случае
осесимметричного течения в виде

∂V̄

∂t
+ grad

1

2
V 2 + rotV̄ × V̄ +

1

ρ
grad · p = −ν rot rotV̄ ,

divV̄ = 0.

(1.1)

На границах с оболочками выполняются условия прилипания жидкости

Vr = −∂W
∂t

, Vx =
∂U

∂t
при r = R1 −W. (1.2)

Здесь t – время; Vr, Vx – проекции вектора скорости жидкости на оси цилин-
дрической системы координат; p – давление; ρ – плотность; ν – кинематиче-
ский коэффициент вязкости; U – продольное упругое перемещение оболочек
по оси x; W – прогиб, положительный к центру кривизны оболочки; R1 –
внутренний радиус оболочки.

В случае осевой симметрии используя гипотезу Кирхгофа-Лява, имеем
связь между компонентами деформаций εx , εy перемещений

εx =
∂U

∂x
− z∂

2W

∂x2
+

1

2
(
∂U

∂x
− z∂

2W

∂x2
)2 +

1

2
(
∂W

∂x
)2, εy = − 1

R
W, (1.3)

где R – радиус срединой поверхности оболочки, z – расстояние от нее. Связь
между компонентами напряжений σx, σy и деформаций зададим уравнения-
ми квадратичной теории вязкоупругости учитывающей линейную упругость

4



объёмных деформаций

σx =
E

1− µ2
0

(εx + µ0εy)−
E

1 + µ0
α

∫ t

−∞
e−β(t−τ)(1 + aε2

u)exdτ,

σy =
E

1− µ2
0

(εy + µ0εx)−
E

1 + µ0
α

∫ t

−∞
e−β(t−τ)(1 + aε2

u)eydτ.

(1.4)

Здесь E – модуль Юнга, µ0 – коэффициент Пуассона материала оболочек
(считая их одинаковыми), t – время; α, β, ρ – параметры вязкоупругости; ε2

u

–квадрат интенсивности деформаций, ex, ey – компоненты девиатора дефор-
маций

ε2
u =

4

3
(ε2
x + ε2

y − εxεy); ex =
2

3
εx −

1

3
εy, ey =

2

3
εy −

1

3
εx. (1.5)

Разлагая функции (1 + aε2
u)ex, (1 + aε2

u)ey в ряд Тейлора по степеням (t−
τ), при условии βt � 1 сохраняем два члена разложения их формул (1.4)
получим приближенные уравнения состояния

σx =
E

1− µ2
0

(εx + µ0εy) + p[
2

3
εx −

1

3
εy + a(e

2

uex)],

σy =
E

1− µ2
0

(εy + µ0εx) + p[
2

3
εy −

1

3
εx + a(ε

2

uey)]
(1.6)

где введен оператор p, такой, что

pf =
E

1 + µ0
(
α

β2

∂f

∂t
− α

β
f) (1.7)

Вычисляя усилия и моменты по формулам

Nx =

∫ h0
2

−h0
2

σxdz,Ny =

∫ h0
2

−h0
2

σydz,Mx =

∫ h0
2

−h0
2

σxzdz,My =

∫ h0
2

−h0
2

σyzzdz (1.8)

и подставим (1.8) в систему уравнений динамических оболочек

∂Nx

∂x
− p0h0

∂2U

∂t2
= −qx,

∂2Mx

∂x2
+

1

R
Ny +

∂

∂x
(
∂W

∂x
Nx)− p0h0

∂2W

∂t2
= −qn (1.9)
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здесь h0 – толщина оболочки; qx, qn напряжения, действующие со стороны
жидкости на поверхность оболочки, снесенные на невозмущаемую поверх-
ность оболочки (W � R)

qx = [ρν(
∂Vx
∂r

+
∂Vr
∂x

)]r=R, qn = [−ρ+ 2ρν
∂Vr
∂r

]r=R (1.10)

Принимая за характерную длину – длину волны деформации l, перейдем
к безразмерным переменным для исследования уравнений динамики оболо-
чек (1.3)-(1.9)

W = wmu3, U = umu1, t∗ =
c0

l
t, x∗ =

x

l
, c0 =

√
E

ρ0 (1− µ2
0)
. (1.11)

здесь c0– скорость звука в материале оболочки
Положим

um
l

= ε = o(1),
wm
R

= O(ε), a = O(ε−1),
α

β
= O(1),

α

β2

C0

l
= O(ε),

R

l
= O(ε1/2),

h0

R
= O(ε),

(1.12)

где ε� 1 – малый параметр в задачи(1.9).
Применим метод двухмасштабных разложений, вводя независимые пере-

менные в виде
ξ = x∗ − ct∗, τ = εt∗, (1.13)

где c – безразмерная неизвестная скорость волны, а зависимые переменные
представлены в виде разложения по малому параметру ε:

u1 = u10 + εu11 + . . . , u3 = u30 + εu31 + . . . (1.14)

В нулевом приближении по ψ (ψ ≈ 0 – гидравлическая теория смазки),
считая (ψ) (R1c0/ν)� 1 (– ползущие течения), и в нулевом приближении по
λ получаем уравнения гидродинамики (классические уравнения гидродина-
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мической теории смазки)

∂P 0

∂r∗
= 0,

∂P 0

∂x
=

1

r∗
∂

∂r∗
(r∗

∂v0
x

∂r∗
),

1

r∗
∂

∂r∗
(r∗v0

r) +
∂v0

x

∂x∗
= 0 (1.15)

и граничные условия

r∗
∂v0

x

∂r∗
= 0, r∗

∂v0
r

∂r∗
= 0 при r∗ = 0,

v0
r = −∂u30

∂t∗
, v0

x =
UmR1

Wml

∂U10

∂t∗
при r∗ = 1.

(1.16)

Из решения задачи (1.15), (1.16) следует, что правой части уравнения оста-
ется выражение

2
ρlν

ρ0h0R1c0ε
[1− (2µ1

R

R1
)
2

]
∂U10

∂ξ
(1.17)

с принятой точностью по ψ, ε положим

R1 ≈ R

Подставляя (1.17) в уравнение (1.9), окончательно получим

∂2u10

∂ξ∂τ
+
um
lε

c

2

∂u10

∂ξ

∂2u10

∂ξ2
+

1

ε
(
R

l
)2µ1

2 c

2

∂4u10

∂ξ4
−

− 2

3

a

ε
(
um
l

)
2
(1− µ0)

α

β

1 + µ1
4 + (1 + µ1)

4

c
(
∂u10

∂ξ
)
2∂2u10

∂ξ2
−

− 1

3

α

β2

c0

lε
(1− µ0)(1 + µ1 + µ1

2)
∂3u10

∂ξ3
−

2[1− (2µ1)
2]

ρlν

ρ0h0R1c0ε

∂u10

∂ξ
= 0. (1.18)

Легко видеть, что замена ∂u10
∂ξ = C3ϕ, η = c1ξ, t = c2τ позволяет запи-

сать уравнение (1.18) в виде

∂ϕ

∂t
+ 6ϕ

∂ϕ

∂η
+
∂3ϕ

∂η3
− 6σ1ϕ

2∂ϕ

∂η
− σ2

∂2ϕ

∂η2
− σϕ = 0. (1.19)

здесь σ = 1 при µ1 <
1
2 , σ = −1 при µ1 >

1
2 и σ = 0 при µ1 = 1

2 .
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2 Точные решения и некоторые аналитические оценки

При σ1 = 0, σ2 = 0 и σ = 0 уравнение (1.19) переходит в уравнение
Кортевега–де Вриза, которое имеет следующее точное решение

∂

∂t
ϕ+6

∂

∂x
ϕϕ+

∂3

∂x3
ϕ = 0 (2.1)

θ = κx− ωt

ϕ =
ω

6κ
+

4

3
κ2 − 2κ2 tanh2 (θ)

(2.2)

При σ1 = 0 и σ = 0 уравнение переходит в уравнение Кортевега–де Вриза
Бюргерса, которое имеет следующие точные решения

∂

∂t
ϕ+6

∂

∂x
ϕϕ+

∂3

∂x3
ϕ−σ2

∂2

∂x2
ϕ = 0 (2.3)

θ =
1

10
σ2x− ωt

ϕ =
5

3

ω

σ2
+

1

50
σ2

2 −
1

25
σ2

2 tanh (θ)− 1

50
σ2

2 tanh2 (θ)
(2.4)

θ = − 1

10
σ2x− ωt

ϕ = −5

3

ω

σ2
+

1

50
σ2

2 +
1

25
σ2

2 tanh (θ)− 1

50
σ2

2 tanh2 (θ)
(2.5)

При σ = 0 уравнение (1.19) имеет следующее точное решение

∂

∂t
ϕ+6

∂

∂x
ϕϕ+

∂3

∂x3
ϕ−σ1 ϕ

2 ∂

∂x
ϕ−σ2

∂2

∂x2
ϕ = 0 (2.6)

θ = κx+ t

(
−9

κ

σ1
+

1

6
κσ2

2 + 2κ3

)
ϕ =

3

σ1
± σ2

√
6

6
√
σ1
± κ
√

6
√
σ1

tanh (θ)

(2.7)
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При σ = 0 и σ1 = 54/σ2
2 уравнение переходит в следующее, которое имеет

точное решение

∂

∂t
ϕ+6

∂

∂x
ϕϕ+

∂3

∂x3
ϕ−54

σ2
2

ϕ2 ∂

∂x
ϕ−σ2

∂2

∂x2
ϕ = 0 (2.8)

θ = κx+ 2tκ3

ϕ = −1

3
κσ2 tanh (θ)

(2.9)

При σ = 0 уравнение имеет следующее точное решение

∂

∂t
ϕ+

∂3

∂x3
ϕ−σ1 ϕ

2 ∂

∂x
ϕ−σ2

∂2

∂x2
ϕ = 0 (2.10)

θ = κx+ t

(
1

6
κσ2

2 + 2κ3

)
ϕ = ±κ

√
6 tanh (θ)
√
σ1

± σ2

√
6

6
√
σ1

(2.11)

Эти точные решения будут использованы для проверки разностных схем,
которые будут получены в разделе 3.
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3 Компьтерное моделирование

Запишем уравнение (1.19) в интегральной форме

∮
∂Ω

(−3σ0ϕ
2 − ϕηη + 2σ1ϕ

3 + 2σ2ϕη dt+ σϕ dη −
∫∫

Ω

σϕ dt dη = 0 (3.1)

для любой области Ω. Для перехода к дискретной формулировке сопоставим
unj = ϕ(tn, ηj).

Добавим интегральные соотношения∫ ηj+1

ηj

uη dη = u(t, ηj+1)− u(t, ηj),∫ ηj+1

ηj

uηη dη = uη(t, ηj+1)− uη(t, ηj).
(3.2)

Используя для интегрирования по времени и по четным производным по η
формулу трапеций, а по нечетным производным по η формулу среднего значе-
ния, и полагая tn+1− tn = τ , ηj+1−ηj = h, перепишем соотношения (3.1),(3.2)
в виде в виде разностной схемы для уравнения (1.19), аналогичную схеме
Кранка-Николсона для уравнения теплопроводности

un+1
j − unj
τ

+ 3σ0

(u2n+1
j+1 − u2n+1

j−1 ) + (u2n
j+1 − u2n

j−1)

4h
+

+
(un+1

j+2 − 2un+1
j+1 + 2un+1

j−1 − un+1
j−2 ) + (unj+2 − 2unj+1 + 2unj−1 − unj−2)

4h3
−

− 2σ1

(u3n+1
j+1 − u3n+1

j−1 ) + (u3n
j+1 − u3n

j−1)

4h
+

− σ2

(un+1
j+1 − 2un+1

j + un+1
j−1 ) + (unj+1 − 2unj + unj−1)

2h2
−

− σ
un+1
j + unj

2
= 0. (3.3)

Программа расчета была написана на языке Python с использованием
пакета SciPy.
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ЗАКЛЮЧЕНИЕ

Проведенное моделирование с использованием компьютерной алгебры
позволило выявить особенности поведения волн деформаций в физически
нелинейной упругой цилиндрической оболочке, содержащей вязкую несжи-
маемую жидкость.

Использование базиса Грёбнера для генерации разностной схемы при чис-
ленном решении задачи Коши для нелинейного уравнения в частных произ-
водных третьего порядка по пространственной переменной, позволило полу-
чить результат расчета без осцилляций вызываемых численной реализацией.
Численная схема также была протестирована на на многих точных решений
при разных параметрах.

Полученный расчет показал влияние вязкой несжимаемой жидкости на
поведение нелинейной волны деформации в оболочке в зависимости от вели-
чины, характеризующей материал оболочки – коэффициента Пуассона:

- рост амплитуды волны для неорганических материалов,
- падения амплитуды волны для живых организмов,
- отсутствие влияния жидкости для несжимаемых материалов, таких как
резина.

Следует отметить, что все результаты справедливы для оболочки очень
малого радиуса, а частности для мелких кровеносных сосудов.

11


	ВВЕДЕНИЕ
	Построение математической модели
	Точные решения и некоторые аналитические оценки
	Компьтерное моделирование
	ЗАКЛЮЧЕНИЕ

