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Введение 

Теория некорректных задач —направление математики, связанное с самыми 

разнообразными прикладными проблемами: интерпретацией показаний 

многих физических приборов, геофизических, геологических, 

астрономических наблюдений, оптимизацией управления и планирования, 

синтезом автоматических систем. Развитие теории некорректных задач 

обусловлено появлением современной вычислительной техники. 

Различные разделы теории некорректных задач могут быть отнесены к 

традиционным разделам математики, таким, как теория функций, 

функциональный анализ, дифференциальные уравнения, линейная алгебра. 

1. Понятие корректности (правильности) постановки задачи математической 

физики было сформулировано в начале нашего века известным французским 

математиком Адамаром. В настоящее время это понятие приводится в 

учебных пособиях по уравнениям математической физики или уравнениям с 

частными производными. 

Задача математической физики или краевая задача для уравнения с частными 

производными называется поставленной корректно, если выполняются 

следующие условия: 

1)решение задачи существует; 

2)решение задачи единственно; 

3)решение задачи непрерывно зависит от данных задачи. 

Некорректно поставленные задачи возникают естественным образом при 

решении самых разнообразных прикладных задач, а также при 

исследованиях в области математической теории. Некорректно поставленные 

задачи или, другими словами, задачи, неустойчивые по отношению к 

погрешностям в их исходных данных, отличаются тем, что сколь угодно 

малые изменения в этих исходных данных могут приводить и приводят к 

произвольно большим изменениям решений таких задач. Важнейшим 
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классом некорректных задач, возникающих в самых разнообразных 

приложениях, служит обширнейший класс оптимизационных задач, для 

которых свойство неустойчивости по отношению к возмущениям их 

исходных данных является характерным. В данной работе рассматривается 

одна из известных некорректно поставленных задач- задача восстановления 

непрерывных функций, заданных из приближения в метрике пространства 

L2[a,b]. Выпускная квалификационная работа состоит из введения, двух 

основных теоретических разделов, приложения, заключения и списка 

использованных источников.  

Основное содержание работы 

Во введении дается общее понятие корректности и некорректности задачи и 

краткое содержание работы. 

В первом разделе «Задача восстановления непрерывной функции» 

рассмотрено восстановление непрерывной функции в рамках теории 

некорректно поставленных задач, приведены примеры таких задач и дается 

решение задачи восстановления с помощью оператора Стеклова и 

расширенного оператора Стеклова( 𝑆ℎ и 
~
𝑆ℎ

𝜑). 

Простейшей некорректной поставленной задачей является задача 

восстановления непрерывных функций. Пусть некоторая функция 

𝑓(𝑥)𝜖С[𝑎, 𝑏].Точная функция 𝑓(𝑥) нам не известна, но известно 

‖𝑓𝛿(𝑥) − 𝑓(𝑥)‖ ≤ 𝛿 в L2[a,b], требуется найти такую функцию 𝑓𝛿(𝑥), чтобы 

в пространстве  С[𝑎, 𝑏]: ‖𝑓𝛿(𝑥) − 𝑓(𝑥)‖ → 0 при 𝛿 → 0.Известно: ‖𝑓(𝑥)‖ =

max
𝑎≤𝑥≤𝑏

|𝑓(𝑥)|. В пространстве L2[a,b]: ‖𝑓(𝑥)‖ = √∫ 𝑓2(𝑥)𝑑𝑥
𝑏

𝑎
. 

Рассмотрим оператор Стеклова: 

𝑆ℎφ=  
1

2ℎ
∫ 𝜑(𝑡)𝑑𝑡

𝑥+ℎ

𝑥−ℎ
. 

Возьмем оператор 𝑆ℎ и применим к  𝑓𝛿: 
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Рассмотрим: 

| Shfδ − f|, применим неравенство треугольника: 

 

|Sh fδ − f| = |Shfδ − Shf + Shf − f|, таким образом получаем: 

 

|𝑆ℎ𝑓𝛿 − 𝑆ℎ𝑓 + 𝑆ℎ𝑓 − 𝑓| ≤ |𝑆ℎ(𝑓𝛿 − 𝑓)| + |𝑆ℎ𝑓 − 𝑓| (1). 

 

Возьмем |𝑆ℎ  𝑓 − 𝑓|, убедимся сначала, что 𝑆ℎ1≡1  : 

 

Sh1 = 1 =
1

2h
∫ dt

x+h

x−h
= 1, умножим обе части на 𝑓(𝑥), получим: 

 

1

2h
∫ f(x)dt = f(x)

x+h

x−h
  

Отсюда получим:  

|Sh f − f| =
1

2h
∫ (f(t) − f(x))dt

x+h

x−h
, 

 

1

2h
∫ (f(t) − f(x))dt

x+h

x−h
≤

1

2h
∫ |f(t) − f(x)|dt

x+h

x−h
, 

 

1

2h
∫ |f(t) − f(x)|dt

x+h

x−h
≤ ω(h), 

 

ω(h) = sup|t−x|≤h|f(t) − f(x)|,  

 

Где 𝜔(ℎ)- модуль непрерывности функции 𝑓(𝑥) 
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Из определения непрерывности следует, что: 

|𝑆ℎ  𝑓 − 𝑓| → 0 при ℎ → 0 

Теперь рассмотрим: 

|𝑆ℎ(𝑓𝛿 − 𝑓)| =
1

2ℎ
∫ |(𝑓𝛿(𝑡) − 𝑓(𝑡)𝑑𝑡|

𝑥+ℎ

𝑥−ℎ
  

Применим неравенство Буняковского-Шварца, имеющее вид: 

 

, тогда получим: 

 

1

2h
∫ |(fδ(t) − f(t)dt|

x+h

x−h
≤

1

2h
√∫ (fδ − f)2dt

x+h

x−h
√2h,  

 

1

2h
√∫ (fδ − f)2dt

x+h

x−h
√2h ≤

1

√2h
√∫ (fδ − f)2dt

b

a
,  

 

1

√2h
√∫ (fδ − f)2dt

b

a
≤

δ

√2h
, 

 

|Sh|fδ − f|| ≤
δ

√2h
, 

 

|𝑆ℎ𝑓𝛿 − 𝑓| ≤
𝛿

√2ℎ
+ 𝜔(ℎ) → 0 при ℎ → 0.  

Отрезок на который действует оператор Стеклова [𝑎 + ℎ, 𝑏 − ℎ]. 

Необходимо доопределить на [𝑎, 𝑎 + ℎ), (𝑏 − ℎ, 𝑏], 

Возьмем [𝑎, 𝑏] = [0,1] 

Продолжим 𝜑 четным образом за границы отрезка, продолженную функцию 

назовем 𝜑(𝑥),применим к ней оператор Стеклова: 

Sh φ1 =
1

2h
∫ φ1(t)dt

x+h

x−h
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𝜑1(𝑡) = {

𝜑(−𝑡), если 𝑡 < 0

𝜑(𝑡),   если 𝑡𝜖[0,1]

𝜑(−𝑡 + 2),   если 𝑡 > 1

 (2) 

 

Если мы заменим 𝜑1 согласно (2), то получим 
~
𝑆ℎ

𝜑 

 

Пусть 𝑥𝜖[0, ℎ], тогда: 

 

Shφ1 =
1

2h
∫ φ1(t)dt

x+h

x−h
=  

1

2h
∫ φ1(t)dt

0

x−h
+

1

2h
∫ φ1(t)dt

x+h

0
, 

 

1

2h
∫ φ1(t)dt

0

x−h
+

1

2h
∫ φ(−t)dt

x+h

0
=

1

2h
∫ φ1(−t)dt

0

x−h
+

1

2h
∫ φ(t)dt

x+h

0
  

 

Пусть −𝑡 = 𝑡1, 𝑑𝑡 = −𝑑𝑡1, 𝑡 = 𝑥 − ℎ, 𝑡1 = ℎ − 𝑥, 𝑡 = 0, [𝑎 + ℎ, 𝑏 − ℎ].  

 

1

2h
∫ φ(−t)dt

0

x−h
= ∫ φ(t1)dt1 = ∫ φ(t)dt

h−x

0

h−x

0
  

 

Shφ1 =
1

2h
∫ φ(t)dt +

h−x

0

1

2h
∫ φ(t)dt

h+x

0
, таким образом получим: 

 

1

2h
∫ φ(t)dt +

h−x

0

1

2h
∫ φ(t)dt

h+x

0
=

1

h
∫ φ(t)dt +

h−x

0

1

2h
∫ φ(t)dt

h+x

h−x
, 

 

1

ℎ
∫ 𝜑(𝑡)𝑑𝑡 +

ℎ−𝑥

0

1

2ℎ
∫ 𝜑(𝑡)𝑑𝑡

ℎ+𝑥

ℎ−𝑥
- расширенный оператор Стеклова 

~
𝑆ℎ𝜑. 
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Пусть 𝑥𝜖[ℎ, 1 − ℎ], тогда 
~
𝑆ℎ

𝜑 = 𝑆ℎ𝜑, 

 

xϵ[1 − h, 1] :  

 

 Shφ1 =
1

2h
∫ φ1(t)dt

x+h

x−h
=

1

2h
∫ φ1(t)dt

1

x−h
+

1

2h
∫ φ1(t)dt

x+h

1
, 

 

 
~
Sh

φ=
1

2h
∫ φ(t)dt +

2−x−h

x−h

1

h
∫ φ(t)dt

1

2−x−h
, 

 

~
𝑆ℎ

𝜑=
1

ℎ
∫ 𝜑(𝑡)𝑑𝑡 +

ℎ−𝑥

0

1

2ℎ
∫ 𝜑(𝑡)𝑑𝑡

ℎ+𝑥

𝑥−ℎ
, если 𝑥𝜖[0, ℎ]. 

 

~
𝑆ℎ

𝜑=
1

2ℎ
∫ 𝜑(𝑡)𝑑𝑡

𝑥+ℎ

𝑥−ℎ
, если 𝑥𝜖[ℎ, 1 − ℎ] 

 

~
𝑆ℎ

𝜑=
1

2ℎ
∫ 𝜑(𝑡)𝑑𝑡 +

2−𝑥−ℎ

𝑥−ℎ

1

ℎ
∫ 𝜑(𝑡)𝑑𝑡

1

2−𝑥−ℎ
, если 𝑥𝜖[1 − ℎ, 1] 

 

Пусть x=h, 
1

2ℎ
∫ 𝜑𝑑𝑡

2ℎ

0
, функция не рвется, и так же она непрерывна в точке 

x=1-h. 

 

Пусть x=1-h, 
~
𝑆ℎ

𝜑=
1

2ℎ
∫ 𝜑𝑑𝑡

1

1−2ℎ
, 

 

‖
~
𝑆ℎ

𝑓𝛿 − 𝑓‖
𝐶[0,1]

≤
+
−

~
𝑆ℎ

𝑓 , 

 

‖
~
Sh

fδ − f‖
C[0,1]

≤
+
−

~
Sh

f ≤ ‖
~
Sh

fδ −
~
Sh

f‖
C

+ ‖
~
Sh

f − f‖
C

, 
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‖
~
𝑆ℎ

fδ −
~
𝑆ℎ

f‖
C

= ‖
~
𝑆ℎ

(fδ − f)‖
C

 

 

 

Под нормой оператора A мы понимаем: 

 

‖A‖ = sup‖Af‖: ‖f‖ = 1 

 

Если A𝜖( 𝐿2[0,1] → 𝐶[0,1]) 

 

‖𝐴‖𝐿2→𝐶
= 𝑠𝑢𝑝‖𝑓‖=1‖𝐴𝑓‖𝐶  

 

‖𝐴‖𝐿2→𝐶
= sup 𝑚𝑎𝑥 ‖𝐴𝑓‖, √∫ 𝑓2𝑑𝑡

1

0
= 1.  

 

Таким образом, 𝑆h – интегральный оператор. 

Запишем его в виде: 

 

~
𝑆ℎ

𝑓 = ∫ 𝐾ℎ(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡   𝑥𝜖[0, ℎ]
1

0
 , где: 

 

𝐾ℎ(x,t)={

1

ℎ
, 0 ≤ 𝑡 ≤ ℎ − 𝑥

1

2ℎ
, ℎ − 𝑥 < 𝑡 ≤ ℎ + 𝑥

0, если ℎ − 𝑥 < 𝑡 ≤ 1 

 , если 𝑥𝜖[0, ℎ] 
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Пусть 𝑥𝜖[ℎ, 1 − ℎ]: 

 

𝐾ℎ(x,t)={
1

2ℎ
, 𝑥 − ℎ ≤ 𝑡 ≤ ℎ + 𝑥

0, если 0 ≤ 𝑡 ≤ 1
 

 

Пусть 𝑥𝜖[1 − ℎ, 1]: 

 

𝐾ℎ(x,t)={

0, если 0 ≤ 𝑡 ≤ ℎ − 𝑥
1

2ℎ
, 𝑥 − ℎ < 𝑡 ≤ 1 − 𝑥 − ℎ

1

ℎ
, 1 − 𝑥 − ℎ < 𝑡 ≤ 1 

 

 

Пусть А-интегральный оператор, действующий из С[0,1] → 𝐶[0,1],  

то справедливы следующие формулы: 

 𝐴𝑓 = ∫ 𝑘(𝑥, 𝑡)
1

0
𝑓(𝑡)𝑑𝑡 

 

‖𝐴‖𝐶→𝐶 = 𝑚𝑎𝑥 ∫ |𝑘(𝑥, 𝑡)|𝑑𝑡
1

0

 

‖𝐴‖𝐿2→𝐿2
≤ √∫ ∫ 𝑘2(𝑥, 𝑡)𝑑𝑡𝑑𝑥

1

0

1

0
. 

Во втором разделе « Выбор параметра регуляризации» рассмотрены методы 

регуляризации и показаны основные алгоритмы выбора параметра для 

данных методов. 

Широко распространенным приемом решения линейных операторных 

уравнений I рода является сведение их к системе линейных алгебраических 

уравнений(с.л.а.у.). Некорректность исходной задачи делает в общем случае 

эту с.л.а.у. вырожденной или плохо обусловленной. Такие системы 

необходимо решать с применением устойчивых методов (регуляризирующих 
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алгоритмов), среди которых наиболее удобен метод А.Н.Тихонова. Его 

использование и ведет к возникновению рассматриваемой нами проблемы 

выбора параметра регуляризации α.  

Основной конструкцией метода Тихонова, который часто называют еще 

методом стабилизации, как и в случае решения абстрактного уравнения 

первого рода, является сглаживающая функция (функционал) или функция 

Тихонова T δ α (z) ≡ f δ (z) + α∥z∥ 2 , z ∈ D, где α > 0 – параметр 

регуляризации. Слагаемое α∥z∥ 2 , как и ранее, носит название 

стабилизирующего слагаемого. Рассмотрим вспомогательную задачу 

минимизации T δ α (z) → inf, z ∈ D. Для приближенного решения этой задачи 

могут использоваться различные численные методы. Предположим, что в 

результате конечного числа итераций одного из таких методов (это число 

свое для каждого δ) в нашем распоряжении имеется точка z δ,ε α такая, что T 

δ α ≡ min z∈D T δ α (z) ⩽ T δ α (z δ, ε α ) ⩽ T δ α + ε, где величина ε > 0 

характеризует точность решения задачи минимизации. Следует сказать, что, 

вообще говоря, задача минимизации при каждой фиксированной паре δ, α 

обладает, как правило, значительно большим “запасом устойчивости” нежели 

исходная задача и в огромном числе случаев является корректно 

поставленной. Однако, тот факт, что задача минимизации обладает большим 

“запасом устойчивости”, чем исходная задача, сам по себе еще не 

гарантирует того, что элементы z δ, ε α , определяемые соотношениями, 

будут сходиться в метрике гильбертова пространства Z. Это связано с тем, 

что, очевидно, чем меньше значение параметра α, тем меньше 

стабилизирующее слагаемое α∥z∥ 2 и одновременно тем меньше “запас 

устойчивости” задачи минимизации. Оказывается, для получения элементов 

z δ, ε α таких, что при δ → 0, α → 0, ε → 0 они сходятся ко множеству D∗ , 

уменьшение “запаса устойчивости” следует компенсировать согласованным 

изменением величин α, ε и величины δ, характеризующей ошибку исходных 

данных. Ошибка в выборе α, ε может привести к тому, что даже в самых 
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простейших ситуациях элементы z δ, ε α не будут сходиться ко множеству D∗ 

при δ → 0, α → 0, ε → 0. 

 

Также рассмотрены следующие правила выбора параметра регуляризации: 

1. Критерий квазиоптимальности: В качестве параметра α(uδ) выбирается 

наименьшее из значений α≥0, реализующих локальный минимум 

функции Ψ(α)=║ α(dzα/dα) ║2. 

2. Критерий отношения: Параметр α(uδ) определяется как наименьшее из 

значений α≥0, в которых достигается локальный минимум функций 

ξ(α). 

В разделе численного эксперимента представлено 2 подпункта: 

1.«Моделирования функции, заданной с погрешностью» 

Для проведения численного эксперимента приведен алгоритм моделирования 

функции fδ(x) по точно заданной f(x). 

Пусть f(x) ∈ C[0,1] и δ некоторое число из отрезка [0,1]. Построена функция 

f~ 
δ (x) такую, что: ‖𝑓𝛿(𝑥) − 𝑓(𝑥)‖ ≤ 𝛿 на L2[0,1]. Будем разбивать отрезок  

[0,1] на m частей и рассматривать узлы xi, где i=0,… , m. 

2. «Численный эксперимент по решению задачи восстановления функции 

при различных способах выбора параметра с помощью оператора 𝑆ℎ». 

Заключение 

В работе был изучен предмет некорректно поставленной задачи 

восстановления непрерывной функции на заданном приближении в 

пространстве L2[a,b], приведены два метода решения этой задачи с помощью 

операторов Sh, Sh~. Также были изучены методы регуляризации 

некорректных задач, рассмотрен вопрос выбора параметра в задаче 

восстановления функции. 
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Приведены теоретические обоснования предлагаемых решений. 

Также выполнены численные эксперименты, наглядно показывающие 

практическую ценность и удобство данных методов. 

В приложении приводится пример программы на высокоуровневом языке 

программирования C++ и результаты численного эксперимента по выбору 

параметра регуляризации. 

  

 

 


