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ВВЕДЕНИЕ

Обратные задачи спектрального анализа заключаются в восстановлении
операторов по их некоторым спектральным характеристикам. Подобные за-
дачи играют фундаметальную роль в различных разделах математики и име-
ют много приложений в различных областях естествознания и техники, в
частности, в квантовой физике, механике, электротехнике, геофизике, метео-
рологии. Интерес к этой тематике постоянно увеличивается благодаря по-
явлению новых приложений, и в настоящее время теория обратных задач
интенсивно развивается во всем мире.

Первый результат в теории обратных спектральных задач оператора при-
надлежит В. А. Амбарцумяну. Он показал что в одном частном случае опе-
ратор Штурма-Лиувилля однозначно определяется своим спектром. Однако
результат Амбарцумяна является исключением, и одного спектра, вообще
говоря, недостаточно. Впоследствии Г. Борг доказал, что оператор Штурма-
Лиувилля однозначно определяется двумя спектрами.

Важную роль в теории спектральных задач Штурма-Лиувилля сыграл
оператор преобразовния. В первые для произвольного оператора Штурма-
Лиувилля его построил А. Я. Повзнер, а первым к решению обратных спек-
тральных задач стал применять В. А. Марченко. Позже метод оператора
преобразования использовался в работе И. М. Гельфанда и Б. М. Левитана,
в которой были получены необходимые и достаточные условия восстновления
оператора Штурма-Лиувилля, а также сам метод восстановления.

Целью бакалаврской работы являет построение алгоритма восстановле-
ния дифференциального оператора Штурма-Лиувилля с краевыми условия-
ми третьего рода на конечном интервале.

Работа состоит из пяти разделов: «Основные определения», «Свойства
спектра и собственных функций», «Оператор перобразования», «Теорема един-
ственности», «Метод оператора преобразования».

В разделе «Основные определения» вводятся основные объекты, исполь-
зуемые в работе, такие как оператор Штурма-Лиувилля, собственные значе-
ния и собственные функций, весовые числа.

В разделе «Свойства спектра и собственных функций» рассматриваются
прямые задачи спектрального анализа. В ней получены теоремы об основных
свойствах спектра и собственных функций, в частности, доказаны теоремы
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о существовании и асимптотическом поведении собственных значений и ве-
совых чисел, а также полноте и ортогональности в L2 системы собственных
функций.

В разделе «Оператор преобразования» производится построение операто-
ра преобразования и изучаются его свойств.

В разделе «Теорема единственности» доказывается теорема о единствен-
ности восстановления дифференциального оператора по спектральным дан-
ным.

В разделе «Метод оператора преобразования» выводится основное урав-
нение обратной задачи, а также доказывается его однозначная разрешимость.
Это уравнение является линейным интегральным уравнением относительно
ядра оператора преобразования. С его помощью, сводя нелинейную обратную
задачу к линейной, доказаваются необходимые и достаточные условия разре-
шимости задачи восстановления, а также строится алгоритм восстановления
дифференциального оператора.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первом разделе вводятся основные объекты, которые используются
в работе.

Определение 1. Краевая задача L = L(q(x), h,H):

ly(x) = −y′′(x) + q(x)y(x) = λy(x), 0 < x < π, (1)

U(y) = y′(0)− hy(0) = 0, V (y) = y′(π) +Hy(π) = 0, (2)

где q(x), h, H ∈ R и q(x) ∈ L2(0, π), называется краевой задачей Штурма-
Лиувиля.

Определение 2. Значения параметра λ, для которых L имеет нетриви-
альные решения, называются собственными значениями, а соответству-
ющие нетривиальные решения собвтенными функциями.

Обозначим через ϕ(x, λ), ψ(x, λ) решения (1), удовлетворяющие следую-
щим начальным условиям:

ϕ(0, λ) = 1, ϕ′(0, λ) = h,
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ψ(π, λ) = 1, ψ′(π, λ) = −H.

Согласно формуле Остроградского-Лиувилля вронскиан

〈ψ(x, λ), ϕ(x, λ)〉 = 〈ψ(x0, λ), ϕ(x0, λ)〉 exp

(
−
∫ x

x0

0 dt

)
= 〈ψ(x0, λ), ϕ(x0, λ)〉

и не зависит от x.

Определение 3. Функция

∆(λ) = 〈ψ(x, λ), ϕ(x, λ)〉

называется характеристической функцией краевой задачи L.

Определение 4. Числа

αn =

∫ π

0

ϕ2(x, λn) dx,

где λn — собственные значения L, называются весовыми числами.

Во втором разделе доказываются теоремы об основных свойствах спек-
тра и собственных функций.

Теорема 1. Нули характеристической функции ∆(λ) совпадают с собствен-
ными значениями {λn} краевой задачи L. Функции ϕ(x, λn) и ψ(x, λn) явля-
ются собственными функциями, и существует последовательность {βn},
что

ψ(x, λn) = βnϕ(x, λn).

Теорема 2. Собственные значения {λn} и собственные функции ϕ(x, λn),
ψ(x, λn) — вещественны. Собственные функции, соответствующие различ-
ным собственным значениям, ортогональны в L2(0, π). Все нули ∆(λ) яв-
ляются простыми, т. е. ∆̇(λn) 6= 0.

Лемма 1. При |ρ| → ∞ верны следующее равномерные по x ∈ [0, π] асимп-
тотические формулы:

ϕ(x, λ) = cos ρx+ q1(x)
sin ρx

ρ
+

∫ x

0

sin ρ(x− 2t)

2ρ
q(t) dt+O

(
exp(|τ |x)

ρ2

)
, (3)
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ϕ′(x, λ) = ρ sin ρx+ q1(x) cos ρx+
1

2

∫ x

0

cos ρ(x− 2t) q(t) dt+

+O

(
exp(|τ |x)

ρ

)
, (4)

где
q1(x) = h+

1

2

∫ x

0

q(t) dt

и λ = ρ2.

Теорема 3. Краевая задача L имеет счетное множество собственных зна-
ченией {λn}∞n=0. При этом

ρn =
√
λn = n+

ω

πn
+
κn
n
, n→∞, (5)

αn =
π

2
+
κn
n
, n→∞, (6)

где
{κn} ∈ l2.

Лемма 2. Если q(x) ∈ W 1
2 (0, π), то при |ρ| → ∞ верны следующие равно-

мерные по x ∈ [0, π] асимптотические формулы:

ϕ(x, λ) = cos ρx+ q1(x)
sin ρx

ρ
+ q21(x)

cos ρx

ρ2
−
∫ x

0

cos ρ(x− 2t)

4ρ2
q′(t) dt+

+O

(
exp(|τ |x)

ρ3

)
, (7)

ϕ′(x, λ) = −ρ sin ρx+ q1(x) cos ρx+ q22(x)
sin ρx

ρ
+

∫ x

0

sin ρ(x− 2t)

4ρ
q′(t) dt+

+O

(
exp(|τ |x)

ρ2

)
, (8)

где
q21 =

q(x)− q(0)

4
+

1

2

∫ x

0

q(t)q1(t) dt,

q22(x) =
q(x) + q(0)

4
+

1

2

∫ x

0

q(t)q1(t) dt.

Теорема 4. Если q(x) ∈ W 1
2 (0, π), то кравевая задача L имеет счетное
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множетсво собственных значений. При этом

ρn =
√
λn = n+

ω

πn
+
κn
n2
, n→∞, (9)

αn =
π

2
+
ω+

n2
+
κn
n2
, n→∞, (10)

где
{κn} ∈ l2.

Теорема 5. Система собственных функций {ϕ(x, λn)}∞n=0 полна в L2(0, π).
Кроме того, если f(x) ∈ AC(0, π), то

f(x) =
∞∑
n=0

anϕ(x, λn), an =
1

αn

∫ π

0

f(t)ϕ(t, λn) dt,

при чем ряд сходится равномерно на [0, π].

В теретьем разделе строится оператор преобразования, и доказывают-
ся его основные свойства.

Теорема 6. Имеет место предстваление

ϕ(x, λ) = cos ρx+

∫ x

0

G(x, t) cos ρt dt, λ = ρ2, (11)

где G(x, λ) — вещественная непрерывная функция, причем

G(x, x) = h+
1

2

∫ x

0

q(t) dt.

В четвертом разделе доказывается теорема единственности восстанов-
ления дифференциального оператора.

Теорема 7. Если ∀n > 0 λn = λ̃n, αn = α̃n, то L = L̃, т. е. q(x) = q̃(x)

почти всюду на (0, π), h = h̃, H = H̃.

В пятом разделе доказываются необходимые и достаточные условия
разрешимости задачи восстановления дифференциального оператора, а так-
же строится алгоритм решения этой задачи.
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Обозначим

F (x, t) =
∞∑
n=0

(
cos ρnx cos ρnt

αn
− cosnx cosnt

α0
n

)
, (12)

где

α0
n =

{ π

2
, n > 0,

π, n = 0.

Теорема 8. ∀x ∈ (0, π] ядро G(x, t) из представления (11) удовлетворяет
линейному интегральному уравнению

G(x, t) + F (x, t) +

∫ x

0

G(x, s)F (s, t) ds = 0, 0 < t < x. (13)

Теорема 9. ∀x ∈ (0, π] уравнение (13) имеет единственное решение G(x, t)

в L2(0, π).

Алгоритм 1. Пусть даны числа {λn, αn}∞n=0 вида (5), (6). Тогда краевая
задача L(q(x), h,H) строится по следующему алгоритму:

1. По заданным числам {λn, αn}∞n=0 строим функцию F (x, t) по формуле
(12);

2. Находим функцию G(x, t) из уравнения (13);

3. Вычисляем q(x), h и H по формулам

q(x) = 2
d

dx
G(x, x), (14)

h = G(0, 0), H = ω − h− 1

2

∫ π

0

q(t) dt. (15)

Пусть G(x, t) — решение уравнение (13), ϕ̃(x, t) построена по формуле
(11), q(x) и h — по формулам (14), (15).

Лемма 3. Справедливы соотношения:

−ϕ̃′′(x, λ) + q(x)ϕ̃(x, λ) = λϕ̃(x, λ),

ϕ̃(0, λ) = 1, ϕ̃′(0, λ) = h.
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Лемма 4. Справедливо соотношение:

∫ π

0

ϕ̃(t, λk)ϕ̃(t, λn) =

{
0, n 6= k,

αn, n = k.

Лемма 5. ∀n,m > 0 имеет место равенство:

ϕ̃′(π, λn)

ϕ̃(π, λn)
=
ϕ̃′(π, λm)

ϕ̃(π, λm)

Теорема 10. Для того, чтобы вещественные числа {λn}∞n=0 были спек-
тральными данными для некоторой задачи L(q(x), h,H) вида (1), (2), необ-
ходимо и достаточно, чтобы выполнялось (5), (6). Кроме того, если q(x) ∈
∈ W 1

2 , то необходимо и достаточно, чтобы выполнялось (9), (10).

ЗАКЛЮЧЕНИЕ

В данной работе были получены необходимые и достаточные условия раз-
решимости задачи восстановления оператора Штурма-Лиувилля, доказана
единственность решения этой задачи, а также построен алгоритм восстанов-
ления, который является основным результатом работы.

Кроме того, были рассмотрены некоторые прямые задачи спектрального
анализа. В частности, были доказаны теоремы о существовании и асимптоти-
ческом поведении собсетвенных значений и весовых чисел, а также о полноте
и ортональности в L2 системы собственных функций.
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