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Введение 

В основе интерпретации данных становления поля лежит трансформация 

Сидорова-Тикшаева. Опыт применения этой трансформации для интерпретации 

полевых кривых показал, что кривые kS  кажущейся продольной проводимости 

хорошо коррелируют по профилю наблюдений и являются эффективным 

средством для расчленения геоэлектрического разреза. Вместе с тем, проверка 

возможностей трансформации Сидорова-Тикшаева исследована для 

небольшого числа проводящих слоев в разрезе. Представляет интерес изучения 

возможностей трансформации для достаточно большого числа слоев в случае 

контрастных и слабоконтрастных разрезов. Это и является целью настоящей 

дипломной работы. 

Для достижения этой цели будут решены следующие задачи: 

1 Формирование моделей контрастных и слабоконтрастных многослойных 

разрезов; 

2 Расчет становления поля для этих моделей в случае установки петля в 

петле; 

3 Построение кривых kS  в зависимости от времени становления поля; 

4 Построение кривых kS  в зависимости от глубины исследований; 

5 Анализ результатов применения трансформации Сидорова-Тикшаева. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Среди модификаций зондирования становлением поля, различающихся 

типом установок, практическое применение получили две: зондирование в 

дальней (волновой) зоне электрического диполя (ЗС) и зондирование в ближней 

зоне магнитного диполя (ЗСБ). Первую из этих модификаций (ЗС) применяют 

главным образом для поисков нефтегазоносных структур, а вторую (ЗСБ) 

можно также использовать и для прямых поисков хорошо проводящих руд или 

для изучения геологической структуры рудных полей.  



Трансформация Сидорова-Тикшаева базируется на решении задачи о 

становлении поля в присутствие проводящей плоскости. 

Проводящей плоскостью (пленкой) называется однородный проводящий 

слой проводимости   и мощности H  такой, что при уменьшении H  и 

увеличении   имеем 
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Величина S  называется продольной проводимостью проводящей 

плоскости. Рассмотрим становление поля для проводящей плоскости. 

 Поместим проводящую плоскость на поверхности 0z  прямоугольной 

декартовой системы координат, как показано на рисунке 1, и будем считать 

вмещающее пространство изолятором. Введем круговую цилиндрическую 

систему координат z,, , связанную с прямоугольными декартовыми 

координатами zyx ,,  соотношениями: cosx , siny , zz  ,  0 , 

 20  ,    z . 

 

Рисунок 1 - Схема возбуждения становления поля для проводящей плоскости 

Пусть электромагнитное поле возбуждается ступенчатым выключением в 

момент времени 0t  тока силы J  в круговой петле радиуса R  с центром на 

оси OZ , расположенной на плоскости hz  . Ступенчатое выключение тока 

означает, что сила тока offJ  в петле изменяется по закону 
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Будем также считать, что ток протекает по часовой стрелке, если смотреть 

на круговую петлю сверху из области hz  . Другими словами, направление 

тока совпадает с направлением вектора e , входящего в тройку zeee ,,   

единичных базисных векторов цилиндрической системы координат и 

касательного к координатной линии  , на которой расположена круговая 

петля. В этом случае объемная плотность стороннего тока e
j  изменяется по 

закону  
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где   – дельта-функция Дирака. 

 В силу симметрии задачи, электромагнитное поле в круговой 

цилиндрической системе координат имеет только три отличные от нуля 

компоненты: E , H  и zH . 

При измерениях поля в плоскости hz   имеем  
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где JRM 2  – магнитный момент круговой петли. 

Рассмотрим теперь метод Сидорова-Тикшаева для решения обратной 

задачи в случае проводящей плоскости. 

 Пусть в плоскости hz   для заданного разноса   известна компонента 

 tE off
  электрического поля, определяемая выражением (1), но неизвестна 

продольная проводимость S  и расстояние h  магнитного диполя до 

проводящей плоскости. Для нахождения этих двух параметров запишем 

выражение (1) в виде 
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 Отсюда находим производную по времени t  функции   mF
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(3), получаем следующее нелинейное уравнение относительно m : 
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Функция  m  монотонно убывающая и    m , поэтому 

существует единственное решение уравнения (4). После нахождения 

численного решения m  этого уравнения, из уравнения (3) определяют 

продольную проводимость 
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а затем – расстояние h  от плоскости измерения поля (плоскости hz  ) до 

проводящей плоскости 
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 Интерпретация кривых становления поля для установки петля в петле 

проводится с помощью трансформации (качественной интерпретации) 

Сидорова-Тикшаева. В этой интерпретации предполагается, что в каждый 

отсчет времени t  кривая  tE эксп
  становления поля такая же, как и  tE off

  для 

проводящей плоскости,  расположенной в непроводящем пространстве, т.е. при 

нахождении S  и h , соответствующих времени t , в уравнение (4) вместо 
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применяя формулу (5), определяют   
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ktS  , называемую кажущейся 

продольной проводимостью геоэлектрического разреза в момент времени t . 

Вместо h  обычно вычисляют   mtHk 75.0  – кажущуюся глубину 

исследования, где  - радиус измерительной петли. После расчета  tS  и  tH k  

для каждого отсчета времени t  строят кривые кажущейся продольной 

проводимости  tS  и кажущейся глубины исследования  tH k . После чего 

рассчитывается кривая  kHS . 

Для проведения расчетов становления поля вертикального магнитного 

диполя, лежащего на дневной поверхности многослойной среды, с помощью 

генератора случайных чисел построено четыре 20-ти слойных 

геоэлектрических разреза. Первые два разреза являются контрастными по 

проводимости, и отличаются друг от друга только тем, что в одном случае 

основание разреза высокоомное, а в другом – низкоомное. Два других разреза – 

слабоконтрастные, так же отличающиеся между собой основаниями.  

По результатам расчетов становления поля построены кривые кажущейся 

продольной проводимости )(tSk , кривые SK(HK) и теоретические кривые S(H). 

Эти кривые изображены на рисунках 2 – 9.  
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Рисунок 2 – Кажущаяся продольная проводимость )(tSk  для контрастной среды 

с высокоомным основанием 

 

 

 

 

 

 

 

 

 

Рисунок 3 - теоретическая кривая S(H) и кривая SК(HK) для контрастного 

геоэлектрического разреза и высокоомного основания 
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Рисунок 4 – Кажущаяся продольная проводимость )(tSk  для контрастной среды 

с низкоомным основанием 

 

 

 

 

 

 

 

 

 

Рисунок 5 - теоретическая кривая S(H) и кривая SК (HK) для контрастного 

геоэлектрического разреза и низкоомного основания 
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Рисунок 6 – Кажущаяся продольная проводимость )(tSk  для слабоконтрастной 

среды с высокоомным основанием 

Рисунок 7 - теоретическая кривая S(H) и кривая SK(HK) для слабоконтрастного 

геоэлектрического разреза и высокоомного основания 
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Рисунок 8 – Кажущаяся продольная проводимость )(tSk  для слабоконтрастной 

среды с низкоомным основанием 

Рисунок 9 - теоретическая кривая S(H) и кривая SК (HK) для 

слабоконтрастного геоэлектрического разреза и низкоомного основания 
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В целом кривые неплохо определяют тренд теоретических кривых S(H). 

Однако кривые SК(HK) дают несколько заниженные значения продольной 

проводимости геоэлектрического разреза, хотя по точкам перегиба кривых 

SК(HK) хорошо определяются границы высокоомных и низкоомных 

горизонтов.  

Заключение 

В настоящей дипломной работе получены следующие результаты: 

1. Рассмотрены теоретические основы метода становления поля.  

2. Показаны особенности становления поля в дальней и ближней зонах.  

3. Рассмотрены прямая и обратная задача становления поля вертикального 

магнитного диполя в присутствии проводящей плоскости. 

4. Применяя генератор случайных чисел, построено четыре модели 20-ти 

слойных геоэлектрических разрезов: два разреза контрастных и два 

слабоконтрастных. 

5. Проведены расчеты становления поля вертикального магнитного диполя 

для построенных разрезов. 

6. Применена трансформация Сидорова-Тикшаева к рассчитанным кривым 

становления поля. 

7. Построены кривые kS  кажущейся продольной проводимости от времени t . 

8. Построены кривые kH  кажущейся глубины исследования. 

9. Выполнено сравнение теоретических кривых продольной проводимости и 

кривых  kk HS  для контрастных и слабоконтрастных разрезов. 

10.  По результатам численных расчетов сделан вывод о том, что применение 

трансформация Сидорова-Тикшаева для многослойных контрастных и 

слабоконтрастных разрезов дает неплохое соответствие теоретических 

кривых  HS  продольной проводимости и кривых  kk HS  кажущейся 

продольной проводимости.  

Все поставленные задачи во введении дипломной работы выполнены 

полностью. 


