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ВВЕДЕНИЕ

Основными методами геометрической теории функций являются следующие:

метод площадей и контурного интегрирования, параметрический метод, ва-

риационный метод, метод интегральных представлений, метод экстремаль-

ных метрик. Эти методы появились в разное время, и поводом для для их

создания явились различные экстремальные задачи, которые в то время по

другому не решались. Отсутствие во множестве однолистных функций струк-

туры линейного пространства потребовало создания оригинальных методов

исследования экстремальных задач. Одним из методов решения экстремаль-

ных задач для однолистных функций является метод площадей, основанный

на принципе площадей, который в применении к однолистным функциям

выражает тот факт, что площадь дополнения к образу области при её отоб-

ражении регулярной в ней функцией неотрицательна.

Геометрические соображения стали основой для метода площадей, исполь-

зованного в 1914 году Гронуоллом, и затем Л. Бибербахом в задачах о по-

стоянной Кебе и коэффициентах на классе S голоморфных нормированных

однолистных в единичном круге функций, а также в работах Фабера и Г.М.

Голузина. Метод площадей, являющийся в первооснове самым элементарным

среди методов геометрической теории функций, получил развитие и много-

численные приложения особенно за последние 40-50 лет. С помощью метода

площадей можно улучшить многие результаты оценочного характера в кон-

структивной теории функций комплексного переменного.

Практическая часть работы заключалась в исследовании интегрального

оператора, оценка которого вытекает из формулы Эрмита для остаточного

члена интерполирования.
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Работа состоит из трех глав: Некоторые асимптотические формулы в клас-

се Sα, Интерполирование регулярных функций, Логарифмическая ёмкость

замкнутого множества.
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Некоторые асимптотические формулы в классе Sα.

Напомним, что классом Sα, 0 ≤ α ≤ 1, мы называем подкласс функций

f(z) ∈ S, для которых

lim
r→1−0

(M(r, f)
(1− r)2

r
) = α ≤ 1

где M(r, f) = sup|z|=r |f(z)|, 0 < r < 1.

Мы будем рассматривать классы Sα при α > 0. При этом существует

направление θ,−π < θ ≤ π наибольшего роста, такое что

lim
r→1−0

[|f(reiθ)|(1− r)
2

r
] = α,

lim
r→1−0

[|f ′(reiθ)|(1− r)
3

(1 + r)
] = α.

Далее считаем, что θ фиксировано.

Дадим сначала асимптотические формулы для f(z) ∈ Sα и для f ′(z) вбли-

зи от точки z = eiθ. Фиксируем ϕ, π/4 < ϕ < π/2, и для r, 1−(1−r) tanϕ ≥

sinϕ, 0 < r < 1, полагаем

∆(r, ϕ) =

{
z : 1− (1− r) tanϕ < |z| < 1− 1− r

tanϕ
,

| arg(1− eiθz)| < ϕ, | arg(e−iθz)| < π

2
− ϕ

}
.

Теорема 1.1. Пусть f(z) ∈ Sα, 0 < α < 1, (tanϕ)−1 < Θ < tanϕ, r∗ =

1−Θ(1− r). Тогда

f(z) =
αz

(1− eiθz)2
exp{i(arg f(r∗e

iθ)− θ)} ∗ (1 + ε(r, z)), z ∈ ∆(r, ϕ)

f ′(z) =
α(1 + eiθz)

(1− eiθz)3
exp{i(arg f(r∗e

iθ)− θ)} ∗ (1 + ε1(r, z)), z ∈ ∆(r, ϕ)

где ε(r, z) ⇒ 0 и ε1(r, z) ⇒ 0, z ∈ ∆(r, ϕ), при r → 1− 0.
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Теорема 1.2. Если f(z) ∈ Sα, α > 0, то для любого ε, 0 < ε < 1

существует постоянная K > 2 такая, что для z = reit, 1 − π
K ≤ r <

1, π ≥ |θ − t| ≥ K(1− r), справедливы неравенства

|f(z)| ≤ |z|
(1− r)ε|1− e−iθz|2−ε

<
|z|

(1− r)2ε|1− e−iθz|2−2ε
.

Замечание. Эти теоремы показывают, что поведение функции f(z) в близи

окружности |r| = 1 в некотором смысле аналогично поведению функции

αz

(1− e−iθz)2
exp[i(arg f(z∗e

iθ)− θ)].

Можно ожидать аналогичные свойства у ряда у ряда функционалов, задан-

ных на классе Sα.

Глава 2. Интерполирование регулярных функций. Введём некото-

рые обозначения. Множеством типа M будем называть замкнутое множество

точек комплексной плоскости, содержащее более одной точки, дополнение

которого до расширенной плоскости есть односвязная область, содержащая

точку ∞. B - множество типа M, B1 его дополнение, L-граница B, ω = ϕ(z)

функция, конформно и однолистно отображающая B1 на область |ω| > 1,

причем ϕ(∞) = ∞, ϕ′(∞) = 1
c > 0, z = ψ(ω) функция, обратная для

ω = ϕ(z), Lρ, 1 < ρ < ∞, линия уровня области B1, т.е образ окружности

|ω| = ρ при отображении z = ψ(ω), Bρ - ограниченная область с границей

Lρ, B
1
ρ - неограниченная область с границей Lρ.

Пусть z(n)1 , z
(n)
2 , ..., z

(n)
n+1, n = 0, 1, ..., - последовательность узлов интерпо-

лирования, расположенных на Lr, 1 < r <∞. Положим ω
(n)
k = ψ(z

(n)
k ). Узлы

z
(n)
k , k = 1, ..., n+ 1 будем называть равнорасположенными на Lr, если точки

ω
(n)
k делят окружность |ω| = r на n + 1 равных частей. Далее полагаем, что

узлы z
(n)
k равнорасположены на Lr. Пусть f(z) - функция, регулярная на B,

например, в Bρ0, 1 < ρ0 < ∞ и pn(z) интерполяционный полином степени
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не выше n для f(z), построенный по узлам z
(n)
k , k = 1, ..., n + 1 лежащим на

Lr, 1 < r < ρ0. Тогда

rn(z) = f(z)− pn(z) =
1

2πi

∫
L

f(ζ)

ζ − z
ωn(z)

ωn(ζ)
dζ, (1)

ωn(z) =
n+1∏
k=1

(z − z(n)k ),

где L - какой либо замкнутый кусочно-гладкий контур содержащий внутри

все точки z(n)k и z точку и лежащий в Bρ0. В качестве L обычно берут линию

уровня Lρ, r < ρ < ρ0. Формула (1) называется формулой Эрмита для оста-

точного члена интерполирования rn(z). Из формулы (1) сразу следует оценка

sup
z∈Br
|f(z)− pn(z)| ≤

supz∈Lr |ωn(z)|
infζ∈Lρ|ωn(ζ)|

sup
z∈Lr

1

2πi

∫
Lρ

|f(ζ)|
|ζ − z|

|dζ|. (2)

таким образом оценка |f(z)−pn(z)|, z ∈ Br сводится к оценке двух сомножи-

телей стоящих в правой части формулы (2). Наша задача - получить возмож-

но лучшие оценки этих двух сомножителей в случае равнорасположенных

узлов интерполирования.

Теорема 2.5. Пусть B - множество типа M. Если функция f(z) регу-

лярна в области Bρ0, 1 < ρ0 <∞, и

1

2π

∫ π

−π
|f(ψ(ρeiθ))|dθ ≤M, r < ρ < ρ0.

то для интерполяционных полиномов pn(z), n = 1, 2, ..., построенных по

равнорасположенным на Lr, 1 < r < ρ0 узлам имеют место оценки

|f(z)− pn(z)| ≤M
ρ0 + r

ρ0 − r
Bn(ρ0, r)e

Bn(ρ0,r)
2rn+1

ρn+1
0 − rn+1

0

, z ∈ Br

где Bn(ρ0, r) определяется следующей формулой

Bn(ρ, r) =

√
(n+ 1) ln

(ρr + 1)2

(ρ2 − 1)(r2 − 1)
ln

r2(n+1)

r2(n+1) − 1
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При z ∈ Br′, 1 ≤ r′ < r, дробь ρ0+r
ρ0−r можно заменить на ρ0+r

′

ρ0−r′ .

Глава 3. Логарифмическая ёмкость замкнутого множества.

Введём некоторые обозначения. E - произвольное замкнутое множество

точек плоскости Z, B = C ′E - та из дополнительных для E областей, которая

содержит точку ∞, Eδ, δ > 0 - множество точек z, расстояние которых от

E не превосходит δ, Bδ = C ′Eδ - та из дополнительных для Eδ областей,

которая содержит точку ∞. Bδ - конечносвязная область.

Определение 3.1. Пусть τ -фиксированная точка области B и u(z, τ) -

гармоническая функция точки z ∈ B принимающая на L значения u(z, τ) =

ln |z − τ |. Если граница L - гладкая, то такая функция существует. Опре-

делим функцию

g(z, τ) = ln |z − τ |−1 + u(z, τ),

которая обладает следующими свойствами:

1) g(z, τ)-гармоническая в B, кроме точки z = τ,

2) g(z, τ) + ln |z − τ | = u(z, τ) гармонична и в точке z = τ,

3) g(z, τ) → 0 при z → L из B. Функция обладающая этими тремя

свойствами называется функцией Грина области B.

Полагаем что множество E такое что существует функция Грина gE(z,∞)

области B. Как известно, функция Грина представима в виде

gE(z,∞) = ln |z − z0|+ γ(E) + uE(z), z ∈ B

где z0 - какая либо точка из B, uE(z) - гармоническая в B функция та-

кая, что uE(∞) = 0. Число γ(E) постоянная Робэна для области B, а

C = C(E) = cap E = e−γ(E)-логарифмической емкостью множества E.

Если для области B функция Грина не существует, то полагаем C(E) = 0.
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Определение 3.2. Полином τ̃n(z) назовем полиномом наименее откло-

няющимся от нуля на E (или полиномом Чебышева для E) с корнями на

E. Корни z̃k, k = 1, 2...n, n = 1, 2, ..., полинома τ̃n(z) назовем узлами Че-

бышева для E.

Теорема 3.1. Если множество E такое, что область B имеет функ-

цию Грина gE(z,∞) и τn(z) - полином Чебышева степени n с нулями на E,

то внутри B при n→∞, получим

1

n
ln |τn(z)| − lnµn ⇒ gE(z,∞).
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ЗАКЛЮЧЕНИЕ

В данной работе мы рассмотрели один из методов решения экстремальных

задач для однолистных функций - метод площадей, основанный на принципе

площадей, который в применении к однолистным функциям выражает тот

факт, что площадь дополнения к образу области при её отображении регу-

лярной в ней функцией неотрицательна. Принцип площадей систематически

применяется к экстремальным задачам, возникающим в теории однолистных

функций, с его помощью получено большое число новых результатов и в

нашей стране и за рубежом, а также во многих случаях удалось получить

значительно более простые доказательства многих известных результатов,

полученных ранее другими методами.
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