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ВВЕДЕНИЕ

В настоящее время аппарат регулярных выражений внедряется повсе-

местно. Наиболее часто решаемые задачи с помощью регулярных выраже-

ний — задачи описания лексики формального языка и задачи поиска и филь-

трации в тексте [1, 2].

Регулярные выражения для задач фильтрации могут иметь значитель-

ную сложность с точки зрения таких характеристик как длина выражения

и высота (звездная высота) выражения [3, 4]. Если с истечением времени в

некоторый фильтр, заданный регулярным выражением, добавляются дополни-

тельные условия, то окончательное регулярное выражение может принимать

нечитабельную форму.

Существует несколько теоретических подходов к сокращению значений

величин высоты или длины регулярных выражений. Но ни один подход на

сегодняшний день не дает гарантированного результата сокращения [5].

В настоящей работе ставится задача подготовить базу для экспериментов

по сокращению регулярных выражений на языке LISP, а именно, реализовать

методы получения конечных автоматов по регулярным выражениям и полу-

чения регулярного выражения по автомату. В качестве входных регулярных

выражений должны выступать строки, содержащие регулярные выражения в

записи, принятой в [6].

Для выполнения данной задачи потребуется:

— определить структуры данных для представления регулярных выраже-

ний и конечных автоматов на языке LISP;

— реализовать алгоритмы построения конечных автоматов для результа-

тов регулярных операций (конкатенации, итерации и объединения) над

автоматными языками;

— реализовать алгоритм построения детерминированного автомата по неде-

терминированному;

— реализовать алгоритм построения минимального детерминированного

автомата по заданному автомату;

— реализовать алгоритм исключения состояний автомата для построения

регулярного выражения по заданному автомату.

Данная работа состоит из введения, двух глав, заключения, списка лите-

ратуры и одного приложения. Введение содержит краткое описание и основ-
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ную задачу, которую требуется выполнить.

В первой главе объясняются основные определения и понятия, которые

используются во всей работе, и рассматриваются теоретические аспекты сле-

дующих алгоритмов:

— алгоритм построения автомата по регулярному выражению;

— алгоритм построения регулярного выражения по автомату;

— алгоритмы преобразования конечных автоматов.

Во второй главе подробно рассматривается представление данных в про-

граммной реализации, описана работа алгоритмов с регулярными выражени-

ями и автоматами, а так же приведены примеры работы реализованных алго-

ритмов.
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1 Регулярные языки и автоматы

Регулярное множество имеет следующее определение:

— �— регулярное множество

— {ε}— регулярное множество

— Если a является символом некоторого алфавита, то {a} – регулярное

множество.

— Если L1 и L2 — регулярные множества, то L1∩L2, L1∪L2, L1L2, L
∗ и L̄—

регулярные множества.

Регулярные выражения — это структурные записи для описания регуляр-

ных множеств [6]. Регулярные выражения имеют следующее обозначения:

— ∅— регулярное выражение для пустого множества.

— ε— регулярное выражение для множества {ε}.
— Если символ a— символ некоторого алфавита, то a— регулярное выра-

жение для регулярного множества {a}.
— Если α— регулярное выражение для множества A, а β — регулярное вы-

ражение для регулярного множества B, то α+ β, (α)(β), (α)∗ — регуляр-

ные выражения для регулярных множеств A
⋃
B, AB, A∗ соответствен-

но.

Конечным автоматом называют пятёрку M = (Q,Σ, δ, S, F ), где

— Q— множество имён состояний;

— Σ — конечный входной алфавит;

— δ : Q× Σ→ P(Q) — функция перехода;

— S ⊆ Q— множество начальных состояний автомата;

— F ⊆ Q— множество заключительных состояний.

Конечный детерминированный автомат отличается от недетерминиро-

ванного тем, что из каждого состояния автомат может перейти по определён-

ному входному сигналу точно в одно другое состояние. Кроме того, в детерми-

нированном автомате множество начальных состояний содержит в точности

одно состояние.

Пусть M = (Q,Σ, δ, S, F ) — конечный недетерминированный автомат.

Для построения конечного детерминированного автомата

M ′ = (Q′,Σ, δ′, {q′0}, F ′) применяются следующие правила:

— Q′ = P(Q);

— δ′(q′, a) = {r′}, где r′ =
⋃
q∈q′

δ(q, a),∀q′ ∈ Q′,∀a ∈ Σ;
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— q′0 = S;

— F ′ = {q′ ∈ Q′ | (q′ ∩ F ) 6= ∅}.
Конечные автоматы содержат в себе набор состояний и переходов между

ними, которые зависят от поданных на вход данных.

Согласно [6] класс автоматных языков (языков, допускаемых конечны-

ми автоматами) совпадает с классом регулярных множеств. Таким образом,

для любого конечного автомата можно найти регулярное выражение, опре-

деляющее тот же язык, и для любого регулярного выражения можно найти

соответствующий конечный автомат.

1.1 Построение автомата по регулярному выражению

Для построение автомата по регулярному выражению рассмотрим два

конечных автомата M1 и M2. Пусть L1 = L(M1) и L2 = L(M2).

1. построение автомата для объединения языков (L1 ∪ L2);

2. построение автомата для конкатенации языков (L2L1);

3. построение автомата для итерации языка (L∗1).

1.2 Построение регулярного выражения по автомату

Метод исключения состояний позволяет построить регулярное выраже-

ние α по полученному на входе конечному автомату M = (Q,Σ, δ, S, F ), такое,

что L(α) = L(M).

Дан автомат M = (Q,Σ, δ, S, F ), представленный в виде диаграммы пе-

реходов. В этой диаграмме каждую дугу помечаем регулярным выражением,

состоящим из объединения входных сигналов, приписанных дуге.

Исключение некоторого состояния q2 заключается в следующем. В авто-

мате рассматриваются все тройки состояний, соединенные дугами. Тогда при

исключении состояния q2 нужно изменить метку у дуги между q1 и q3 на вы-

ражение α + βγ∗σ. Состояние q2 исключается, когда будут обработаны таким

образом все подобные пути, проходящие через q2.

Заметим, что какие-то два состояния в тройке могут совпадать, а неко-

торые из дуг отсутствовать. Если некоторые (или все) из дуг отсутствуют,

то можно считать, что они присутствуют, с приписанным к ним регулярным

выражением ∅.

Выдать регулярное выражение
∑

s∈S,q∈F
αsq и закончить алгоритм (здесь

под знаком
∑

предполагается объединение регулярных выражений).
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1.3 Преобразования конечных автоматов

1.3.1 Детерминирование автомата

В теории конечных автоматов сказано [1], что для каждого недетерми-

нированного конечного автомата существует детерминированный конечный

автомат, который принимает тот же язык регулярных выражений, что и неде-

терминированный конечный автомат. Для преобразования НКА в ДКА, необхо-

димо сначала обговорить, что алфавиты этих двух автоматов одинаковы, а так

же начальное состояние детерминированного автомата является множеством

содержащим все начальные состояния недетерминированного автомата [6].

Для реализации алгоритма детерминирования автомата, нам необходим

конечный недетерминированный автомат вида M = (Q,Σ, δ, S, F ). Результа-

том выполнения данного алгоритма будет автомат видаM ′ = (Q′,Σ, δ′, {q0}, F ′).
— Сначала строится множество состояний Q′ = P(Q), где P(Q) — множе-

ство всех подмножеств множества Q.

— Функция переходов определяется следующим образом: δ′(q′, a) = r , где

r′ =
⋃
q∈q′

δ(q, a), ∀q′ ∈ Q′, ∀a ∈ Σ.

— Назначается новое начальное состояние q0′ = S.

— Строится множество заключительных состояний

F ′ = {q′ ∈ Q′ | (q′ ∩ F ) 6= ∅.

1.3.2 Минимизация автомата

Минимизация детерминированного конечного автомата подразумевает

нахождение для каждого ДКА эквивалентного детерминированного конечного

автомата с наименьшим числом состояний. При этом основная идея миними-

зации строится на идее эквивалентности состояний — то есть на возможности

заменить два эквивалентных состояния одним. Поэтому при реализации это-

го алгоритма на вход подаётся конечный детерминированный автомат вида

M = (Q,Σ, δ, {q}, F ), а результатом будет автомат M ′ = (Q′,Σ, δ′, {q0′}, F ′)
такой, что L(M) = L(M ′) и Q′ содержит минимальное возможное количество

состояний.

Алгоритм выглядит следующим образом:

1. Из данного автомата удаляются все недостижимые состояния. Получа-

ется M1(Q1,Σ, δ1, {q1}, F1).

2. Множество состояний Q1 разбивается на классы эквивалентности, со-
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ответствующие отношению неразличимости ≡ (с использованием алго-

ритма заполнения таблицы) и [Q1]≡ — совокупность полученных классов

эквивалентности.

3. Следующим образом определяется автомат M ′ = (Q′,Σ, δ′, {q0′}, F ′), где

— Q′ = [Q1]≡

— q0
′ = [q0]≡

— F ′ = {[q]≡ ∈ [Q1]≡|q ∈ Q1 ∩ F}
— δ′([q]≡, a) = {[r]≡ ∈ [Q1]≡|r ∈ δ(q, a)}, q ∈ Q1, a ∈ Σ.

M ′ выдается в качестве результата и алгоритм завершается.

Разбиение множества состояний автомата на классы эквивалентности

будем осуществлять с помощью метода заполнения таблицы.

Для алгоритма заполнения таблицы требуется конечный автомат вида

M = (Q,Σ, δ, {q}, F ), в котором n = #Q— количество состояний данного

автомата. Результатом преобразований данного алгоритма будет T − n × n—

таблица, ячейки которой обозначаются следующим образом: T (q, r), где q и r —

обозначают состояния. Если состояния q и r различимы, то в ячейку, которая

стоит на пересечении этих двух состояний заносится X .
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2 Реализация преобразований автоматов и регулярных выражений

на языке LISP

Для программной реализации алгоритмов преобразования регулярных

выражений использовался язык Lisp [7–9]. Разработка проводилась с исполь-

зованием интегрированной оболочки LispWorks.

2.1 Представление данных

В качестве входных данных для программы будем использовать строки, в

которых записаны элементы регулярных выражений по следующим правилам:

1. любой символ, отличный от «*», «+», «(», «)» и пробела является сим-

волом языка, определенного регулярным выражением;

2. пробелы при чтении регулярного выражения игнорируются;

3. символы круглых скобок «(» и «)» обозначают ограниченное регулярное

выражение, записанное в скобках. Пустые скобки обозначают регулярное

выражение, определяющее язык, состоящий из одного пустого слова;

4. несколько выражений, записанных подряд, задают конкатенацию опре-

деляемых ими языков;

5. два выражения, записанных через символ «+», задают объединение опре-

деляемых ими языков;

6. символ «*», указанный после символа или после выражения в скоб-

ках, задает итерацию языка, составленного из односимвольного слова

(составленного из этого символа) или определенного регулярным выра-

жением в скобках.
Например

"(00+11)*((01+10)(11+00)*(01+10)(11+00)*)*"

представленное регулярное выражение определяет язык, состоящий из цепо-

чек нулей и единиц, в которых четное число нулей и четное число единиц.

Конечный автомат будем представлять в виде списка из трех элементов

в соответствующем порядке:

1. таблица переходов, представляющая из себя список, в котором каждый

элемент-тройка представлен в виде списка

(ñîñòîÿíèå1 ñèìâîë ñîñòîÿíèå2),

указывающего, что в автомате присутствует переход из состояния с номе-

ром ñîñòîÿíèå1 в состояние с номером ñîñòîÿíèå2 по входному сигналу
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ñèìâîë;

2. список начальных состояний автомата;

3. список заключительных состояний автомата.

Например

1 (((1 0 4) (1 1 2) (2 0 3) (2 1 1) (3 0 2) (3 1 4) (4 0 1) (4 1 3))

2 (1)

3 (2))

— конечный детерминированный автомат, допускающий цепочки из нулей и

единиц, в которых четное число нулей и нечетное число единиц.

2.2 Построение автомата по регулярному выражению

Автомат, определяющий тот же язык, что и регулярное выражение, бу-

дем строить из автоматов для элементарных языков, последовательно строя

автоматы, для результатов регулярных операций, упомянутых в регулярном

выражении.

Реализация алгоритма объединения (функция ob) выглядит следующим

образом:

1. Получаем на вход два автомата.

2. Переименовываем все состояния второго автомата, увеличивая каждое

состояние на максимальный элемент первого автомата.

3. Объединяем функции переходов автоматов.

4. Объединяем начальные состояния автоматов.

5. Объединяем конечные состояния автоматов.

Реализация алгоритма конкатенации (функция conc) выглядит следую-

щим образом:

1. На вход подаётся два автомата.

2. Переименовываем все состояния второго автомата, увеличивая каждое

состояние на максимальный элемент первого автомата.

3. Находим все переходы второго автомата из его начального состояния.

Повторяем найденные переходы для каждого заключительного состояния

первого автомата.

4. Создаём новую таблицу переходов, объединяя переходы первого и вто-

рого автомата с новыми переходами.

5. В качестве начальных состояний нового автомата берем все начальные

состояния первого автомата;
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6. Если пересечение множеств начальных и конечных состояний второго

автомата не пусто, то заключительными состояниями объявляем объ-

единение множеств заключительных состояний двух автоматов, иначе

только заключительные состояния второго автомата.

При построении автомата для итерации автоматного языка (функция

iter) выполняются следующие действия:

1. Подаётся на вход автомат.

2. Находятся все переходы из начального состояния автомата. Найденные

переходы дублируются для каждого заключительного состояния автома-

та.

3. Создаётся новое состояние (увеличивается количество состояний авто-

мата).

4. Новое состояние объявляется дополнительным начальным.

5. Новое состояние объявляется дополнительным заключительным.

2.3 Построение регулярного выражения по автомату

Для преобразования ДКА в регулярное выражение (функция aut->reg)

мы используем метод исключения состояний. Он состоит в том, что мы ис-

ключаем некоторое состояние и все пути автомата, что проходят через это

состояние. Однако, чтобы язык автомата остался без изменений, нам необ-

ходимо скорректировать метки на путях, обходящих исключаемое состояние.

При этом вместо обычных меток, на дугах, описывающих такие пути, будем

указывать регулярные выражения, описывающие множество слов, по которым

осуществляется переход. Таким образом мы получаем в рассмотрение автомат,

у которого метками переходов являются регулярные выражения [6].

2.3.1 Минимизация автомата

Минимизация детерминированного конечного автомата подразумевает

нахождение для каждого ДКА эквивалентный детерминированный конечный

автомат с наименьшим числом состояний. При этом основная идея миними-

зации строится на идее эквивалентности состояний, то есть на возможности

заменить два различных состояния одним.

Алгоритм минимизации детерминированного конечного автомата (функ-

ция minimize) выглядит следующим образом:
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— Для обнаружения всех эквивалентных состояний конечного автомата

применяется алгоритм заполнения таблицы, который состоит в рекур-

сивном обнаружении пар различимых состояний.

— Множество состояний подвергается разбиению на классы эквивалентно-

сти, то есть на подмножества, в которых любая пара состояний (p, q) не

различима.

— Строится новый ДКА с минимальным числом состояний, используя в

качестве состояний полученные классы эквивалентности. Если S — это

класс эквивалентности, q ∈ S и δ(q, a) = r то δ′ — функция переходов

нового автомата, определяется как δ′(S, a) = T , где T — класс эквива-

лентности, содержащий r.

— Так же необходимо отметить, что начальным состоянием является класс

эквивалентности, который содержит в себе начальное состояния старого

автомата.

2.4 Преобразование регулярных выражений

Для удобочитаемости регулярных выражений был реализован алгоритм

их упрощений (функция simplify-reg).

Перечислим основные принципы, включенные в алгоритм. Пусть α, β И

γ — регулярные выражения. Тогда

— αα = α

— α + α = α

— α + ε = ε+ α = α

— αε = εα = α

— (α) = α

— α(βγ) = (αβ)γ = αβγ

— (αβ)γ = αβγ

— (ε)∗ = ε
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ЗАКЛЮЧЕНИЕ

В ходе выполнения дипломной работы был реализован набор функций

для работы с регулярными выражениями и конечными автоматами в терминах

теории формальных языков. Данный пакет предназначен для дальнейшего изу-

чения аппарата регулярных выражений на предмет минимизации параметров,

таких как длина выражения и его звездная высота.
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