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Введение

Актуальность темы исследования. Спектральные задачи, задачи рассея-

ния, а также задачи переноса для дифференциальных операторов на графе в

последние годы достаточно часто встречаются в математических, естественно-

научных и инженерных работах. В таких областях как наноэлектроника, ме-

ханика и также квантовые вычисления эти задачи используются для постро-

ения математических моделей и их дальнейшего изучения. Большая часть

этих работ посвящена так называемым прямым задачам изучения свойств

спектра и собственных функций для оператора на графе. Обратные спек-

тральные задачи в силу нелинейности являются более сложными объектами

для изучения и на данный момент существует не так много работ, посвя-

щенных этой теме. В частности, была изучена обратная спектральная задача

восстановления коэффициентов дифференциальных операторов на деревьях

(т.е. графов без циклов), а также была решена задача восстановления ко-

эффициентов в операторе Штурма-Лиувилля на произвольном компактном

графе. Операторы Штурма-Лиувилля с сингулярными потенциалами также

достаточно часто встречаются в различных областях математических или

естественно-научных дисциплин. В современных работах были изучены са-

ми операторы, порожденные на конечных промежутках, а также получены

результаты для обратных задач. Обратные задачи для операторов Штурма-

Лиувилля с сингулярным потенциалом на графах практически не рассматри-

вались.На данный момент есть лишь решение такой задачи на графеЏзвезде.

Цель магистерской работы состоит в решении обратной задачи для опера-

тора Штурма-Лиувилля с сингулярным потенциалом на произвольном ком-

пактном графе. Достижение поставленной цели потребовало решения следу-

ющих задач:

1. Изучить методы решения обратных спектральных задач;

2. Доказать теорему единственности для получаемого решения;
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3. Построить алгоритм решения задачи;

Магистерская работа состоит из введения, четырех глав, заключения,

списка использованных источников. В введении дается общая характеристи-

ка работы: актуальность, цель, задачи. В первой главе дается формулируется

обратная задача для уравнения Штурма-Лиувилля с сингулярным потенци-

алом на произвольном графе. Во второй главе вводятся в рассмотрения раз-

личные решения уравнения и доказываются вспомогательные утверждения.

В третьей главе решается обратная вспомогательная задача на некотором

ребре. В четвертой главе формулируется возвратная процедура и строится

решение поставленной задачи. В заключении приводятся результаты проде-

ланной работы.

Основное содержание работы

В первой главе вводится в рассмотрение уравнение Штурма-Лиувилля с

сингулярным потенциалом на компактном связном графеG, а также ставится

обратная задача восстановления потенциала по функциям Вейля. Рассмот-

рим компактный связный граф G. Обозначим множество вершин графа G

как V (G), а множество ребер - E(G). Ребра графа G будем рассматривать

как гладкие кривые, которые пересекаются только в вершинах. Длину ребра

e обозначим как |e|. Каждое ребро e параметризуем параметром x ∈ [0, |e|].

Ориентацию ребра выберем таким образом, чтобы его начало соответствовало

точке x = |e|, а конец - точке x = 0. Также введем в рассмотрение отображе-

ние µ, которое в соответствие каждому ребру будет ставить упорядоченную

пару вершин e± ∈ V (G): µ(e) := [e−, e+], где вершина e− соответствует нача-

лу ребра, а e+ - концу.

Множество внутренних вершин обозначим через V I(G), а множество гра-

ничных - V B(G). Множество ребер, инцидентых вершине v в графе G обо-

значим как I(v,G). Цепь ребер {e1, ..., en} называется циклом, если образу-

ет замкнутую кривую. Ребро e называется простым, если не является ча-
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стью какого-либо цикла. Пусть EP (G) - множество простых ребер. Введем

также множество ребер, принадлежащих одному или нескольким циклам:

EC(G) = E(G)\EP (G). Для определенности будем считать, что в графе

G есть хотя бы одна граничная вершина. Определим некоторую вершину

vr ∈ V B(G) как корень. В дальнейшем будем считать, что если e ∈ EP (G),

то начало ребра будет ближе к корню, чем его конец.

Сведем все циклы в точки, тогда получим некоторый граф G∗ с множе-

ством ребер E(G∗) = EP (G). Минимальное число ребер на G∗ между кор-

невым ребром и ребром e, включая e называется порядком ребра e. Число

ω := max
e∈G∗

ωe называется порядком G∗. обозначим множество E(ν), ν = 0, ω,

множеством простых ребер порядка ν.

Пусть y - некоторая функция на графе, представимая как y = [ye]e∈E,

где ye(x) относится к ребру e, а x ∈ [0, |e|]. Также рассмотрим веществен-

нозначную функцию q = [qe]e∈E(G), где qe(x) относится к ребру e, а x ∈ [0, |e|]

определена на ребре e и qe ∈ W−1
2 [0, |e|], т.е. qe(x) = σ′e(x) (производная

рассматривается в смысле обобщенных функций), а σe(x) ∈ L2[0, |e|]. Мы

назовем функцию σe(x) потенциалом на ребре e. Обозначим σ = [σe]e∈E(G).

Рассмотрим уравнение Штурма-Лиувилля с сингулярным потенциалом на

ребре e ∈ E(G) [9-11]:

`eye = −
(
y[1]
e

)′ − σe(x)y[1]
e − σ2

e(x)ye,

`eye = λye, e ∈ E(G) (1.1)

где y[1]
e := y′e − σe(x)ye - это квазипроизводная.

dom(`e) = {ye | ye ∈ W 1
2 [0, |e|], y[1]

e ∈ W 1
1 [0, |e|], `eye ∈ L2[0, |e|]}.

В каждой вершине v ∈ V I(G) введем условия склейки, которые в даль-

нейшем будем обозначать как MC(v)-условия для e ∈ I(v,G):

ye|v = yr|v, e, r ∈ I(v,G),∑
e∈I(v,G) ∂eye|v = 0,

(1.2)
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где введены обозначения

ye|v :=

 ye(0), v = e+

ye(|e|), v = e−
, ∂eye|v :=

 y
[1]
e (0), v = e+

−y[1]
e (|e|), v = e−

Также, если некоторое ребро e ∈ EB(G), то под y|v, ∂y|v будем понимать

соответственно ye|v, ∂eye|v, такие, что e ∈ I(v,G), а v ∈ V B(G).

Рассмотрим краевую задачу LD(G), D ⊂ V B(G), для уравнения (1.1) с

MC(v)-условиями в каждой v ∈ V I и граничным условиями

∂y|v = 0, v ∈ V B(G)\D, y|u = 0, u ∈ D. (1.3)

Пусть ребро r ∈ EC(G), а v = r−. Рассмотрим краевую задачу LvD(G),

D ⊂ V B(G), для уравнения (1.1) сMC(u)-условиями в каждой u ∈ V I(G)\{v}

и граничными условиями

∂y|u = 0, u ∈ V B(G)\D, y|u = 0, u ∈ D,

ye|v = 0, e ∈ I(v,G)
(1.4)

В дальнейшем будем обозначать L(G) := L∅(G), Lv(G) := Lv∅(G).

Пусть ϕv = [ϕev]e∈E(G), v ∈ V B(G), будут решениями уравнения (1.1),

удовлетворяющими (1.2) и граничным условиям

∂ϕv|u = δuv, u ∈ V B(G) (1.5)

где δuv-символ Кронекера.

Обозначим Mv(λ) := ϕv|v. Функция Mv(λ) называется функцией Вейля

для уравнения (1.1) относительно вершины v ∈ V B(G).

Теперь построим функцию Вейля на ребрах из множества EC(G). За-

фиксируем e ∈ EC(G). Пусть ϕe = [ϕer]r∈E(G) будут решениями уравнения

(1.1), удовлетворяющими MC(v)–условиям при v ∈ V I(G)\{e+}, MC(e+)–

условиям для всех ребер r ∈ I(e+, G)\{e} и граничным условиям

∂ϕe|r+ = δer, r ∈ EB(G) ∪ {e+} (1.6)
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Обозначим Me(λ) := ϕe|e+, e ∈ EC(G).

Наряду с потенциалом σ мы рассмотрим потенциал σ̃. В дальнейшем бу-

дем считать, что если символ α обозначает объект, зависящий от σ, то тогда

α̃ обозначает аналогичный объект, зависящий от σ̃, и α̂ := α− α̃.

Сформулируем обратную задачу:

Обратная задача 1. По данным Mv(G), v ∈ EB(G), и Me(λ), e ∈ EC(G),

построить потенциал q на графе G.

Во второй главе получаются оценки для некоторых решений уравне-

ния (1.1), а также доказываются различные вспомогательные утверждения.

Пусть Ce(x, λ), Se(x, λ) - решения с краевыми условиями

Ce(0, λ) = S [1]
e (0, λ) = 1, C [1]

e (0, λ) = Se(0, λ) = 0,

а ψe(x, λ), ζe(x, λ) - решения с краевыми условиями

ζe(|e|, λ) = −ψ[1]
e (|e|, λ) = 1, ψe(|e|, λ) = ζ [1]

e (|e|, λ) = 0. (2.1)

Из формулы Остроградского-Лиувилля получим < Ce(x, λ), Se(x, λ) >= 1,

где вронскиан < y, z >= yz[1] − y[1]z. Обозначим через ∆(λ, L(G)) характе-

ристическую функцию краевой задачи L(G). Как и в классическом случае,

можно показать, что функция Mv(λ) будет мероморфной:

Mv(λ) = −∆(λ, Lv(G))

∆(λ, L(G))
,

Пусть γ = γ(τ) := (−∞+ iτ,+∞+ iτ) и λ = ρ2. Под функцией η(x, ρ, σ)

будем понимать целую по ρ при всех x ∈ [0, l] (l могут быть различны для

различных η(x, ρ, σ)) и некотором фиксированном потенциале σ функцию,

такую что:

1) η(x, ρ, σ) = o(exp(x|Imρ|)) при ρ → ∞ и при любых фиксированных

x ∈ [0, l] и σ ∈ L2(G).

2) η(x, ·, σ) ∈ L2(γ) для любого x ∈ [0, l] при всех вещественных τ и

фиксированном σ ∈ L2(G).
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3) η(·, ·, σ) ∈ L2[0, l]× γ и равномерно ограничена на [0, l]× γ при каждом

фиксированном вещественном τ и фиксированном σ ∈ L2(G).

4) η(x, ρ, σ) непрерывно зависит от σ, а именно при σn → σ в L2(G)

функция η(x, ρ, σn) сходятся к функции η(x, ρ, σ) равномерно на [0, l] × γ

для всех τ > τ0 и

max
x∈[0,l]

||η(x, ·, σn)− η(x, ·, σ)||L2(γ) → 0.

Введем в рассмотрение множество A(τ0) := {ρ : Imρ ≥ τ0}. Под функцией

κ(ρ, σ) будем понимать мероморфную функцию, такую что

1) при фиксированном σ ∈ L2(G) функция κ(ρ, σ) → 0 при ρ → ∞,

ρ ∈ A(τ0), где τ0 может быть различна для различных функций κ.

2) κ(·, σ) ∈ L2(γ) для всех вещественных τ > τ0 и фиксированном σ ∈

L2(G).

3) κ(ρ, σ) непрерывно зависит от σ, а именно при σn → σ в L2(G) функция

κ(ρ, σn) сходится к функции κ(ρ, σ) в L2(γ) и равномерно на γ для всех τ > τ0.

В дальнейшем обозначим как η(x, ρ) и κ(ρ) соответственно различные

функции η(x, ρ, σ) и κ(ρ, σ) с указанными свойствами.

Из [9]–[11] можно получить:

Ce(x, λ) = cosρx+ η(x, ρ), Se(x, λ) =
sinρx

ρ
+

1

ρ
η(x, ρ), (2.2)

ζe(x, λ) = cosρ(|e|−x)+η(|e|−x, ρ), ψe(x, λ) =
sinρ(|e| − x)

ρ
+

1

ρ
η(|e|−x, ρ)

(2.3)

Обозначим [1] := 1+κ(ρ). Тогда, используя асимптотики (2.2) для Ce(x, λ)

и Se(x, λ), получаем

Ce(|e|, λ) = cos ρ|e|[1], C [1]
e (|e|, λ) = −ρ sin ρ|e|[1], (2.4)

Se(|e|, λ) =
sin ρ|e|
ρ

[1], S [1]
e (|e|, λ) = cos ρ|e|[1]. (2.5)

7



Ясно, что решения ζe(x, λ) и ψe(x, λ) образуют фундаментальную систе-

му решений. Тогда решение уравнения (1.1) можно выразить как линейную

комбинацию решений Ce(x, λ) и Se(x, λ) или ζe(x, λ) и ψe(x, λ). Обозначим

ξe(x, λ) := Ce(x, λ)− iρSe(x, λ); Ee(x, λ) := ζe(x, λ)− iρψe(x, λ),

Используя (2.2) и (2.3), получим

ξe(x, λ) = e−iρx + η(x, ρ); Ee(x, λ) = eiρ(x−|e|) + η(|e| − x, ρ) (2.6)

Из (2.6) получим следующие выражения

ξe(|e|, λ) = e−iρ|e|[1], Ee(0, λ) = e−iρ|e|[1], (2.7)

ξ[1]
e (|e|, λ) = −iρe−iρ|e|[1], E [1]

e (0, λ) = iρe−iρ|e|[1]. (2.8)

Решения ξe(x, λ) и Ee(x, λ) образуют фундаментальную систему решений.

Тогда рассмотрим

ϕer(x, λ) = Aer(λ)ξr(x, λ) +Ber(λ)Er(x, λ). (2.9)

Подставляя (2.9) в (1.2) и в (1.6), получим систему линейных алгебраических

уравнений относительно Aer(λ), Ber(λ). Определитель этой СЛАУ обозначим

как ∆B(λ,G). Тогда справедливы следующие леммы

Лемма 1. Пусть Θ := {
∑
e∈E

θe|e|, θe ∈ {0, 1, 2}}. Тогда справедливо

∆B(λ,G) = (iρ)n
∑
l∈Θ

Al(G)e−iρl[1], A|G| 6= 0, (2.20)

где n := |V I |+ |V B|, а |G| := 2
∑

e∈E(G)

|e|.

Лемма 2. Для достаточно больших |ρ|, таких что ρ ∈ Aε, справедлива

оценка

C1|ρ|ne2|G|Imρ < |∆B(λ,G)| < C2|ρ|ne2|G|Imρ. (2.28)

Из справедливости полученных лемм вытекает
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Лемма 3. При фиксированных x ∈ [0, |e|] для ρ ∈ Aε, ρ→∞, справедли-

вы следующие асимптотики

ϕer(x, λ) = O
(1

ρ
e−xImρ

)
, ϕ[1]

er (x, λ) = O
(
e−xImρ

)
, (2.29)

ϕ̂er(x, λ) =
1

ρ
eiρxκ̂(ρ). (2.20)

В третьей главе доказывается единственность, а также на некотором

фиксированном ребре k ∈ EB(G) формулируется и решается вспомогатель-

ная обратная задача:

Вспомогательная обратная задача IP (k,G): по данным Mk+(λ), постро-

им потенциал q на k.

Воспользовавшись леммой 3 и свойствами функции κ(ρ), можно доказать

следующую теорему:

Теорема 1. Зафиксируем k ∈ EB(G). Пусть k ∈ I(v,G). Если Mk+(λ) ≡

M̃k+(λ), тогда σk(x) ≡ σ̃k(x) почти всюду на [0, |k|].

В ρ- плоскости рассмотрим контур γ = γ(τ) := (−∞ + iτ,+∞ + iτ),

где τ > 0 такое, что inf{Λk ∪ Λ̃k} > −τ 2. Пусть Γ будет контуром в λ-

плоскости, который есть образ γ при отображении λ = ρ2. Обозначим D+

образ полуплоскости {Imρ > τ}, и D− := C\D+. Пусть

CN := {|λ| = (N + 1/4)2}, C−N := CN ∩D−

контура с обходом по часовой стрелке. Обозначим ΓN = Γ ∩ intCN , Γ−N =

ΓN ∪ C−N .

Определим функцию

Dk(x, λ, µ) :=
< Ck(x, λ), Ck(x, µ) >

λ− µ
=

x∫
0

Ck(t, λ)Ck(t, µ)dt,

D̃k(x, λ, µ) :=
< C̃k(x, λ), C̃k(x, µ) >

λ− µ
=

x∫
0

C̃k(t, λ)C̃k(t, µ)dt,
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Тогда справедливы следующие леммы

Лемма 4. Для всех x ∈ [0, |k|], λ ∈ D+ справедливо

Ck(x, λ) = C̃k(x, λ) +
1

2πi
lim
N→∞

∫
ΓN

D̃k(x, λ, µ)M̂k(µ)Ck(x, µ)dµ. (3.2)

Определим

r̃k(x, ρ, θ) := D̃k(x, λ, µ)θM̂k(µ); rk(x, ρ, θ) := Dk(x, λ, µ)θM̂k(µ);

Выберем контур γ(τ) таким, что θM̂e(µ) ∈ L2(γ).

Лемма 5. Для любого λ ∈ D+ и x ∈ [0, |k|],∫
γ

|Dk(x, λ, θ
2)|2|dθ| < A(x, ρ), (3.3)

где A(x, ρ) равномерно ограниченно на компактном множестве.

Лемма 6. Выполняются следующие оценки∫
γ

∫
γ

|rk(x, ρ, θ)|2|dθ||dρ| <∞,
∫
γ

∫
γ

|r̃k(x, ρ, θ)|2|dθ||dρ| <∞. (3.4)

Перенесем уравнение (3.2) на Гильбертово пространство L2(γ). Из [19] мы

получим соотношение

Ψk(x, ρ) =
1

πi

∫
γ

r̃k(x, ρ, θ)Ψk(x, θ)dθ + F̃k(x, ρ), (3.5)

где при λ→ Γ

Ψk(x, ρ) := Ck(x, λ)− C̃k(x, λ),

F̃k(x, ρ) :=
1

2πi
lim
N→∞

∫
ΓN

D̃k(x, λ, µ)M̂k(µ)S̃k(x, µ)dµ, λ = ρ2 (3.6)

Из (2.2) следует, что Ψk(x, ·) ∈ L2(γ). Для каждого фиксированного x ∈

[0, |k|] соотношение (3.5) может быть рассмотрено как линейное интегральное

уравнение в L2(γ) относительно Ψk(x, ρ). Уравнение (3.5) называется основ-

ным уравнением для задачи IP (k). Удобно перезаписать основное уравнение
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в операторной форме. Для каждой фиксированной x ∈ [0, |k|] мы определим

линейные операторы H̃k(x) и Hk(x) в L2(γ) следующим образом

H̃k(x)f(ρ) :=
1

πi

∫
γ

r̃k(x, ρ, θ)f(θ)dθ, Hk(x)f(ρ) :=
1

πi

∫
γ

rk(x, ρ, θ)f(θ)dθ

Тогда основное уравнение запишется в виде

Ψk(x) = H̃k(x)Ψk(x) + F̃k(x). (3.7)

Из (3.4) следует, что H̃k(x) является оператором Гильберта-Шмидта в L2(γ).

Используя лемму 4, можно получить

Теорема 2. Для каждого фиксированного x ∈ [0, |k|] уравнение (3.7)

единственным образом разрешимо в L2(γ).

Найдем решение задачи IP (e). Используя (3.2), получим

Теорема 3. Решение σe(x) задачи IP (e) может быть найдено по фор-

муле

σk(x) = − 1
πi

∫
Γ C̃k(x, µ)Ĉk(x, µ)M̂k(µ)dµ+ 1

πil.i.m.N→∞
∫
γN
ρ cos 2ρxM̂k(ρ

2)dρ

(3.8)

где γN = γ ∩ {ρ : |ρ|2 = (N + 1/4)2}.

Таким образом, решение вспомогательной задачи может быть построено

по следующему алгоритму:

Алгоритм 1. Дана функция Mk(λ).

1) Возьмем σ̃ = 0 и подсчитаем C̃k(x, λ), M̃k(λ), D̃k(x, λ, µ) и r̃k(x, ρ, θ).

2) Построим F̃k(x, ρ) используя (3.6).

3) Найдем Ψk(x, ρ), решив основное уравнение (3.7) для каждого фикси-

рованного x ∈ [0, |k|].

4) Построим σk(x), используя (3.8), где Ĉk(x, λ) = Ψk(x, ρ).

В четвертой главе формулируется возвратная процедура и решается об-

ратная задача 1. Для получения возвратной процедуры представим решение

уравнения (1.1) в виде

ye(x, λ) = M 0
e (λ)Se(x, λ) +M 1

e (λ)Ce(x, λ). (4.1)
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Построим графы Ĝ и Q. Зафиксируем ребро r ∈ EP (G) ∩ EI(G). Пусть

v = r−, v ∈ V (G). Вершина v делит граф G на две части: G = Q ∪ Ĝ, где

V (Q) ∩ V (Ĝ) = v и E(Ĝ) ∩ I(v,G) = r.

Подставляя решение (4.1) в различные краевые условия, мы получим

различные характеристические функции, представимые, как определители.

Определитель ∆(λ, L(G)) разложим по теореме Лапласа по тем столбцам,

которые соответствуют M 0
e (λ), M 1

e (λ), e ∈ E(Ĝ). Возможны два случая.

1. Пусть v ∈ V B(Q). Тогда ясно, что при u ∈ V B(G) ∩ V B(Q)

∆(λ, L(G)) = ∆(λ, L(Ĝ))∆(λ, Lv(Q)) + ∆(λ, Lv(Ĝ))∆(λ, L(Q)),

∆(λ, Lu(G)) = ∆(λ, L(Ĝ))∆(λ, Luv(Q)) + ∆(λ, Lv(Ĝ))∆(λ, Lu(Q)),

Тогда из определения функции Вейля получим

Mv(λ, Ĝ) =
Mu(λ,G)∆(λ, Lv(Q)) + ∆(λ, Luv(Q))

∆(λ, Lu(Q)) + ∆(λ,Q)Mu(λ,G)
. (4.2)

2. Для v ∈ V I(Q) аналогично получаем при u ∈ V B(G) ∩ V B(Q)

∆(λ, L(G)) = ∆(λ, L(Ĝ))∆(λ, L(Q)) + ∆(λ, Lv(Ĝ))∆(λ, Lv(Q)),

∆(λ, Lu(G)) = ∆(λ, L(Ĝ))∆(λ, Lu(Q)) + ∆(λ, Lv(Ĝ))∆(λ, Lvu(Q)),

Тогда получаем

Mv(λ, Ĝ) =
Mu(λ,G)∆(λ, L(Q)) + ∆(λ, Lu(Q))

∆(λ, Lvu(Q)) + ∆(λ, Lv(Q))Mu(λ,G)
. (4.3)

Пусть дано Mv(λ,G), v = e±, e ∈ EC(G). Рассмотрим задачу IP (e,G).

Сдвинув некоторую вершину u , соответствующую концу ребра e, к вершине

u′ /∈ G без изменений других вершин и изменения длины |e|, мы получим Ge с

ребром e′ вместо e. Ребро e′ - граничное в Ge, а u′ - граничная вершина. Учи-

тывая, что процедура восстановления потенциала одинакова для всех ребер,

то ясно, что IP (e,G) эквивалентно IP (r,G), где e ∈ EC(G), r ∈ EB(G).

Возвратная процедура. Зафиксируем e ∈ EP (G)\EB(G). Пусть e ∈

E(ν) и вершина v ∈ V (G) - начало ребра e. Вершина v делит граф G на

две части G = Q ∪ Ĝ, где V (Q) ∩ V (Ĝ) = v и E(Ĝ) ∩ I(v,G) = e. Тогда
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выполняются (4.2) или (4.3). Предполагаем потенциал q известным на Q.

Фиксируем u ∈ V B(G) ∩ V (Q). Пусть Mu(λ,G) даны.

1. Функции Вейля Mv(λ, Ĝ) находим из (4.2) или (4.3).

2. Решая обратную задачу IP (r, Ĝ), мы построим потенциал q на r.

Пусть даны спектрыMv(λ), Me(λ), v ∈ V B(G), e ∈ EC(G). Тогда решение

обратной задачи:

Алгоритм 2.

1. Для каждого фиксированного

a)k ∈ EB(G) решаем IP (k,G) по алгоритму 1 и находим σk

b)e ∈ EC(G) решаем IP (e,G) по алгоритму 1 и находим σe

2. Для ν = ω − 1, ..., 0 мы используем возвратную процедуру, а, следова-

тельно, находимMk+(λ). После чего находим σk, используя процедуру восста-

новления потенциала из функции Вейля. Повторяя этот шаг для всех k ∈ E(ν)

и всех ν = ω − 1, ..., 0, получаем σ на всем графе G.

Заключение

В магистерской работе рассмотрена обратная задача восстановления потен-

циала по данным функциям Вейля для оператора Штурма-Лиувилля с син-

гулярным потенциалом, заданном на произвольном компактном графе. Была

доказана теорема единственности, получена возвратная процедура и был по-

строен алгоритм решения поставленной задачи.
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