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введение

Общая характеристика работы. Выпускная квалификационная работа
выполнена на тему «Термоустойчивость ортотропной ребристой пластинки
на базе модели типа Рейсснера».

Объект исследования: тонкая пластинка, изготовленная из изотроп-
ного материала и подкрепленная ребрами жесткости.

Предмет исследования: критическая температура ребристой пла-
стинки, при которой последняя скачкообразно меняет форму равновесия.

Задача исследования: вывод уравнения для определения критической
температуры для прямоугольной изотропной пластинки, подкрепленной реб-
рами жесткости, на базе модели типа Рейсснера, а также исследование вли-
яния ребер жесткости на термоустойчивость системы.

Актуальность. Ребристые пластинки являются элементами многих
конструкций современной техники(в авиа и судостроении, электронике). В
некоторых случаях условия эксплуатации предполагают температурное воз-
действие со стороны рабочей среды. Известно, что поведение тонкостенных
конструкций в температурных полях непредсказуемо. По этой причине ана-
лиз термоупругого поведения является чрезвычайно важным для практики.

Цель. Получить выражение для силовой функции термоупругой систе-
мы "пластинка–ребра"на базе модели типа Рейсснера. Методом Ритца полу-
чить уравнения для значений критических температур, при которых проис-
ходит статическая потеря устойчивости ребристой пластинки.

Провести количественный анализ влияния геометрических параметров
на величину критической температуры.

Структура и объем работы. Выпускная квалификационная работа
состоит из введения, 4 глав, заключения, списка использованных источни-
ков, включающего 22 наименования, и приложения. Работа изложена на 40
листах машинописного текста, содержит 3 рисунка и 6 таблиц.
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основное содержание работы

Во введении проводится исторический обзор развития теории пластин,
проводится обзор литературы по термоустойчивости пластин и кратко изла-
гается постановка и решение задачи термоустойчивости ребристой пластинки
на базе модели типа Рейсснера.

В первой главе проводится анализ модели Рейсснера: определяются
силовые характеристики для пластинки под действием постоянного по тол-
щине температурного поля.

Предполагается, что напряжения имеют вид:

σ13 = f(z)ϕ1(x1, x2)

σ23 = f(z)ϕ2(x1, x2)
(1)

где ϕ1, ϕ2 неизвестные функции x1, x2; f(z)–известная функция, характери-
зующая распределение напряжений по толщине.

f(z) =
1

2

(
h2

4
− z2

)
(2)

Отсюда были видены деформации:

e13 =
f

G
ϕ

e23 =
f

G
ψ

(3)

Откуда:

u1,3 = −w,1 +
f

G
ϕ

u2,3 = −w,2 +
f

G
ψ

(4)
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Интегрируя, получим закон изменения поля перемещений по толщине
пластины в рамках модели Рейсснера:

u1 = u(x1, x2) − w,1z +
ϕ1

G

∫
fdz

u2 = v(x1, x2) − w,2z +
ϕ2

G

∫
fdz

(5)

Далее были найдены изгибающие моменты:

M11 = − Eh2

12(1 − ν2)
(γ1,1 + νγ2, 2)

M22 = − Eh2

12(1 − ν2)
(νγ1,1 + γ2, 2)

M12 = − Eh3

24(1 + ν)

[
2w,12 −

(
ϕ1,2 + ϕ2,1

10G

)
h2
] (6)

где:

γ1 = w,1 −
h2

10G
ϕ1

γ2 = w,2 −
h2

10G
ϕ2

(7)

– так называемые обобщенные углы поворота.
Во второй главе выводится выражение для силовой функции термо-

упругой системы "пластинка–ребра"на базе континуально–дискретной моде-
ли в обощенных углах поворота и функции прогиба.

Используем уточненную теорию изгиба изотропных пластин, учитыва-
ющую поперечные сдвиги. Тогда силовая фукция рассматриваемой термо-
упругой системы пластинка-ребра, на базе дискретно-континуальной модели
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запишется ввиде:

U =
1

2

a∫
0

b∫
0

{
D

(
∂γ1
∂x

)2

+ 2Dν
∂γ1
∂x

∂γ1
∂y

+D

(
∂γ2
∂y

)2

+

+Dk

(
∂γ1
∂y

+
∂γ2
∂x

)2

+
h2

120
G
(
ϕ2 + ψ2

)
+

n∑
i=1

δ(x− xi)×

×

[
Ep
i J

p
i

(
∂γ2
∂y

)2

+ Cp
i

(
∂γ1
∂y

)2

+
apih

p
ih

120
Gψ2

]
− T 0

1

(
∂w

∂x

)2

−

− T 0
2

(
∂w

∂y

)2

− 2S0

(
∂w

∂x

∂w

∂y

)}
dxdy

(8)

Где:

γ1 =
∂w

∂x
− h2

10
ϕ; γ2 =

∂w

∂y
− h2

10
ψ (9)

δ(x− xi)–сдвинутая дельта-функция Дирака;
Cp
i –жесткости кручения ребер;

api и h
p
i – ширина и высота ребра;

Ep
i и Jpi – жесткости изгиба ребер;

G – модуль сдвига.
D = Eh3

12(1−ν2) ; Dk = h3

12G.
В третьей главе ставится и решается задача статической термоустой-

чивости термоупругой системы "пластинка–ребра".
Рассматривается задача о минимуме двойного интегралла силовой функ-

ции при граничных условиях:

T1 = S = 0, w = 0, M1 = 0, ψ = 0, x = 0, x = a

v = S = 0, w = 0, M2 = 0, ϕ = 0, y = 0, y = b
(10)

или:
u = S = 0, w = 0, M1 = 0, ψ = 0, x = 0, x = a

v = S = 0, w = 0, M2 = 0, ϕ = 0, y = 0, y = a
(11)

Здесь:
M1,M2 – изгибающие моменты;
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T 0
1 , T

0
2 , S

0 – усилия, возникающие в пластинке, когда она имеет плоскую фор-
му равновесия.

Приводится уравнение для определения критических температур полу-
ченное на основании метода Ритца. После подстановки в функций w,ϕ, ψ в
виде семейства линейных комбинаций следующих функций:

w̃ = akm sin kπx
a sin mπy

b

ϕ̃ = bkm cos kπx
a sin mπy

b

ψ̃ = ckm sin kπa
a cos mπy

b

(12)

и нахождения минимума двойного интеграла:
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U =
1

2

a∫
0

b∫
0

{
D

((
−akm

kmπ2

ab
+ bkm

h2

10

kπ

a

)
sin

kπx

a
sin

mπy

b

)2

+

+ 2Dν

(
−akm

kmπ2

ab
+ bkm

h2

10

kπ

a

)
sin

kπx

a
sin

mπy

b
×

×
(
akm

kmπ2

ab
− bkm

h2

10

mπ

b

)
cos

kπx

a
cos

mπy

b
+

+D

((
−akm

m2π2

b2
+ ckm

h2

10

mπ

b

)
sin

kπx

a
sin

mπy

b

)2

+

+Dk

((
akm

kmπ2

ab
− bkm

h2

10

mπ

b

)
cos

kπx

a
cos

mπy

b
+

+

(
akm

kmπ2

ab
− ckm

h2

10

kπ

a

)
cos

kπx

a
cos

mπy

b

)2

+

+
h2

120
G

((
bkm cos

kπx

a
sin

mπy

b

)2

+

+

(
ckm sin

kπa

a
cos

mπy

b

)2)
+

n∑
i=1

δ(x− xi)×

×
[
Ep
i J

p
i

((
−akm

m2π2

b2
+ ckm

h2

10

mπ

b

)
sin

kπx

a
sin

mπy

b

)2
+

Cp
i

((
akm

kmπ2

ab
− bkm

h2

10

mπ

b

)
cos

kπx

a
cos

mπy

b

)2

+

+
apih

p
ih

120
Gzψ

2 − T 0
1

(
akm

kπ

a
cos

kπx

a
sin

mπy

b

)2

−

− T 0
2

(
akm

mπ

y
sin

kπx

a
cos

mπy

b

)2

−

− 2S0

(
akm

kπ

a
cos

kπx

a
sin

mπy

b
× akm

mπ

b
sin

kπx

a
cos

mπy

b

)}
dxdy

(13)

решение примет вид:

θkp

(a
h

)2
α =

æ∗
(

æ22æ23 − E2

G2æ
2
23

)
− E

Gæ33æ
2
12 + 2E2

G2 æ12æ23æ13

æ∗∗
(
æ22æ33 − E2

G2æ2
23

) (14)
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Где:

æ∗ = 12(1 − ν2)π2
(a
b

)2
;

æ∗∗ = π4
{

1 +
(a
b

)4
+

[
2ν + 4

G

E
(1 − ν2)

](a
b

)2
+

+ 24(1 − ν2)
(a
b

)4 n∑
i=1

sin2
πxi

a

Ep
i

E

Jpi
ah3

}
;

æ12 = π3 +

[
ν + 2(1 − ν2)

G

E

]
π3
(a
b

)2
;

æ13 = π3
{(a

b

)3
+

[
ν + 2(1 − ν)2

G

E

]
a

b
+

+ 24(1 − ν)2
(a
b

)3 n∑
i=1

sin
πxi
a

Ep
i

E

Jpi
ah3

}
;

æ23 = π3
E

G

[
ν + 2(1 − ν2)

G

E

]
a

b
;

æ22 = π2
E

G

[
1 + (1 − ν2)

G

E

(a
b

)2]
+ 10(1 − ν2)

(a
h

)2
;

æ33 =
E

G
π2
[(a
b

)2
+ (1 − ν2)

G

E

]
+ 10(1 − ν2)

(a
h

)2
+

+ 24(1 − ν2)π2
(a
b

)2 E
G

n∑
i=1

sin2 πxi
a

api
a

hpi
h

;

(15)

Приводится количественный анализ влияния геометрических парамет-
ров на величины критических температур. Результаты можно видеть в таб-
лицах. Значения критических температур указаны в кельвинах. Критические
температуры при различном количестве ребер:

Таблица 1 — Значения критических температур при граничных условиях 10.

без ребер 2 ребра 5 ребер
Сталь 0.96 1.18 1.4
Чугун белый 0,11 0,14 0,17
Медь прокатная 0,75 0,75 0,81
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Таблица 2 — Значения критических температур при граничных условиях 11.

без ребер 2 ребра 5 ребер
Сталь 2,54 5,80 10,05
Чугун белый 0,29 0,69 1,22
Медь прокатная 1,89 3,45 5,32

Значения критических температур при различной ширине пяти ребер (в
сантиметрах):

Таблица 3 — Значения критических температур при граничных условиях (10).

1 см. 2 см. 3 см.
Сталь 1.16 1.31 1.518
Чугун белый 0.13 0.15 0.18
Медь прокатная 0.67 0.75 0.86

Таблица 4 — Значения критических температур при граничных условиях (11).

1 см. 2 см. 3 см.
Сталь 8.3 9.37 10.86
Чугун белый 1.008 1.14 1.32
Медь прокатная 4.46 4.99 5.72

Значения критических температур при различной высоте пяти ребер, и
ширине в 1.5 (в сантиметрах):
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Таблица 5 — Значения критических температур при граничных условиях (10).

1 см. 2 см. 3 см.
Сталь 0.88 1.05 1.31
Чугун белый 0.11 0.13 0.16
Медь прокатная 0.53 0.62 0.76

Таблица 6 — Значения критических температур при граничных условиях (11).

1 см. 2 см. 3 см.
Сталь 6.32 7.48 9.38
Чугун белый 0.77 0.91 1.14
Медь прокатная 3.49 4.06 4.99

Из этих значений следует, что добавление ребер жесткости значительно
повышает величину критической температуры.
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заключение

1. На основании модели Рейсснера получено выражение для силовых ха-
рактеристик термоупругой системы "пластинка–ребра"в обобщенных
углах поворота и функции прогиба.

2. С помощью метода Ритца определяется уравнение для нахождения кри-
тических температур ребристой пластины.

3. Получены значения критических температур для ребристой пластинки.
4. Проведем количественный анализ влияния геометрических характери-

стик подкрепляющих элементов на величину критической температу-
ры.

11


