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Введение

В данной работе рассматривается обратная задача для дифференциаль-

ного оператора Штурма-Лиувилля на конечном отрезке

−y′′ + q(x)y. (1)

Обратные задачи спектрального анализа заключаются в определении опе-

раторов по некоторым их спектральным характеристикам. Подобные задачи

играют фундаментальную роль в различных разделах математики и имеют

много приложений в механике, физике, электронике, геофизике, метеороло-

гии и других областях естествознания и техники. Интерес к этой тематике

постоянно увеличивается благодаря появлению все новых приложений, и в

настоящее время теория обратных задач интенсивно развивается во всем ми-

ре.

Первые исследования по спектральной теории операторов вида (1) были

выполнены Д. Бернулли, Даламбером, Эйлером, Лиувиллем и Штурмом в

связи с решением уравнения, описывающего колебания струны. Интенсивное

развитие спектральная теория для различных классов операторов получила

в XX веке.

Были предложены различные постановки обратной задачи. Так В.А.Мар-

ченко доказал что дифференциальный оператор однозначно определяется за-

данием своих спектральных данных (т.е. собственных значений и весовых

чисел). Г.Борг доказал аналогичную теорему при заданных двух спектрах, а

А.Н.Тихонов получил теорему единственности решения обратной задачи по

функции Вейля, полюсами которой являются собственные значения. Надо

отметить, что все эти постановки обратной задачи являются эквивалентны-

ми. В нашей работе мы рассмотрим теорему Борга, однако приведем другой

способ доказательства, основанный на операторе преобразования.
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Данная работа состоит из четырех частей.

В первой части, дается понятие спектра для оператора Штурма-Лиувилля

(1). А так же исследуются асимптотические и аналитические свойства соб-

ственных значений.

Во втором разделе доказывается, что система собственных функций явля-

ется полной и образует ортогональный базис в пространстве L2. Приводится

теорема о разложении в равномерной норме. Исследуются также осцилляци-

онные свойства собственных функций и доказывается, что n- я собственная

функция имеет в точности n нулей внутри интервала.

В третьей части работы вводится, так называемый, оператор преобразо-

вания, использующийся при доказательстве большого количества теорем в

теории обратных задач.

В четвертой части формулируется и доказывается основной результат дан-

ной работы - теорема единственности восстановления оператора по двум спек-

трам.
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Основное содержание работы

Рассмотрим краевую задачу L = L(q(x), h,H):

`y = −y′′ + q(x)y = λy, 0 < x < π, (1.1)

U(y) = y′(0)− hy(0) = 0, V (y) = y′(π) +Hy(π) = 0. (1.2)

Здесь λ - спектральный параметр; q(x), h и H вещественны; q(x) ∈ L2(0, π).

Оператор ` называется оператором Штурма-Лиувилля, а функцию q(x) на-

зовем потенциалом.

Найдем ненулевые решения краевой задачи (1.1)-(1.2).

Определение 1.1. Те значения параметра λ, при которых задача L

имеет нетривиальные решения называются собственными значениями, а

сами эти решения называются собственными функциями. Множество соб-

ственных значений называется спектром L.

Вначале исследуем свойства и асимптотику собственных значений и соб-

ственных функций.

Введем в рассмотрение следующие решения уравнения (1.1) C(x, λ), S(x, λ),

ϕ(x, λ), ψ(x, λ) при начальных условиях

C(0, λ) = 1, C ′(0, λ) = 0, S(0, λ) = 0, S ′(0, λ) = 1,

ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ(π, λ) = 1, ψ′(π, λ) = −H.

Обозначим

∆(λ) = 〈ψ(x, λ), ϕ(x, λ)〉, (1.4)

где

〈y(x), z(x)〉 = y(x)z′(x)− y′(x)z(x)

- определитель Вронского (или вронскиан) для функций y(x), z(x).
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Функция ∆(λ) называется характеристической функцией краевой задачи

L.

Теорема 1.1. Нули {λn} характеристической функции совпадают с соб-

ственными значениями краевой задачи L. Функции ϕ(x, λn) и ψ(x, λn) явля-

ются собственными функциями, и существует последовательность {βn}

такая, что

ψ(x, λn) = βnϕ(x, λn), βn 6= 0. (1.6)

Обозначим

αn =

∫ π

0

ϕ2(x, λn) dx. (1.7)

Определение 1.2. Числа {αn} называются весовыми числами, а числа

{λn, αn} называются спектральными данными краевой задачи L.

Лемма 1.1. Справедливо соотношение

βnαn = −∆̇(λn), (1.8)

где числа βn определяются формулой (1.6), и ∆̇(λ) =
d

dλ
∆(λ).

Теорема 1.2. Собственные значения {λn} и собственные функции ϕ(x, λn),

ψ(x, λn) - вещественны. Все нули функции ∆(λ) являются простыми, т.е.

∆̇(λn) 6= 0. Собственные функции, соответствующие различным собствен-

ным значениям, ортогональны в L2(0, π).

Лемма 1.2. При |ρ| → ∞ верны следующие асимптотические формулы

ϕ(x, λ) = cos ρx+O

(
1

|ρ|
exp(|τ |x)

)
= O(exp(|τ |x)),

ϕ′(x, λ) = −ρ sin ρx+O(exp(|τ |x)) = O(|ρ| exp(|τ |x)),

 (1.9)
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ψ(x, λ) = cos ρ(π − x) +O

(
1

|ρ|
exp(|τ |(π − x))

)
=

O(exp(|τ |(π − x))),

ψ′(x, λ) = ρ sin ρ(π − x) +O(exp(|τ |(π − x))) =

O(|ρ| exp(|τ |(π − x)))


(1.10)

равномерно по x ∈ [0, π]. Здесь и в дальнейшем λ = ρ2, τ = Imρ, а o и O -

символы Ландау.

Основным результатом первой части выпускной квалификационной рабо-

ты является следующие теоремы о существовании и асимптотическом пове-

дении собственных значений и собственных функций краевой задачи L, а так

же аналитическом представлении характеристической функции.

Теорема 1.3. Краевая задача L имеет счетное множество собственных

значений {λn}n≥0. При этом

ρn =
√
λn = n+

ω

πn
+
κn
n
, {κn} ∈ l2, (1.13)

ϕ(x, λn) = cosnx+
ξn(x)

n
, |ξn(x)| ≤ C, (1.14)

где

ω = h+H +
1

2

∫ π

0

q(t) dt.

Теорема 1.4. Задание спектра {λn}n≥0 однозначно определяет характе-

ристическую функцию ∆(λ) по формуле

∆(λ) = π(λ0 − λ)
∞∏
n=1

λn − λ
n2

. (1.26)

Во втором разделе работы мы рассмотрим основные свойства собствен-

ных функций Покажем, что система собственных функций краевой задачи
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Штурма-Лиувилля L полна и образует ортогональный базис в L2(0, π). Затем

приведем достаточные условия равномерной сходимости ряда по собственным

функциям. Теоремы о полноте и о разложении играют важную роль при ре-

шении различных задач математической физики методом разделения пере-

менных. Для доказательства этих теорем здесь используется метод контур-

ного интеграла интегрирования резольвенты по расширяющимся контурам в

комплексной плоскости спектрального параметра.

Теорема 2.1. (1) Система собственных функций {ϕ(x, λn)}n≥0 краевой

задачи L полна в L2(0, π).

(2) Пусть f(x), x ∈ [0, π] – абсолютно непрерывная функция. Тогда

f(x) =
∞∑
n=0

anϕ(x, λn), an =
1

αn

∫ π

0

f(t)ϕ(t, λn) dt, (2.1)

причем ряд сходится равномерно на [0, π].

(3) Для f(x) ∈ L2(0, π) ряд (1.2.1) сходится в L2(0, π), причем имеет

место равенство Парсеваля∫ π

0

|f(x)|2 dx =
∞∑
n=0

αn|an|2. (2.2)

Существует несколько методов доказательства теоремы 2.1. В работе ис-

пользуется метод контурного интеграла, который играет важную роль в ис-

следовании прямых и обратных задач спектрального анализа для многих

классов операторов.

Далее изучим вопрос осцилляции собственных функций.

Теорема 2.2. Собственная функция ϕ(x, λn) краевой задачи L имеет

ровно n нулей в интервале 0 < x < π.

Важную роль в теории обратных задач для операторов Штурма-Лиувилля

играют так называемые операторы преобразования. Они связывают решения
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двух различных уравнений Штурма-Лиувилля при всех λ. В третьей части

работы вводятся операторы преобразования и изучим их свойства.

Теорема 3.1. Для функции C(x, λ) имеет место представление

C(x, λ) = cos ρx+

∫ x

0

K(x, t) cos ρt dt, λ = ρ2, (3.1)

где K(x, t) – вещественная непрерывная функция, причем

K(x, x) =
1

2

∫ x

0

q(t) dt. (3.2)

Аналогично можно получить операторы преобразования для решений S(x, λ)

и ϕ(x, λ) :

Теорема 3.2. Для функций S(x, λ) и ϕ(x, λ) имеют место представле-

ния

S(x, λ) =
sin ρx

ρ
+

∫ x

0

P (x, t)
sin ρt

ρ
dt, (3.10)

ϕ(x, λ) = cos ρx+

∫ x

0

G(x, t) cos ρt dt, (3.11)

где P (x, t) и G(x, t) – вещественные непрерывные функции с той же глад-

костью, что и функция
∫ x

0

q(t) dt, причем

G(x, x) = h+
1

2

∫ x

0

q(t) dt. (3.12)

P (x, x) =
1

2

∫ x

0

q(t) dt. (3.13)

Перейдем к основному результату выпускной квалификационной работы.

Для этого, вначале, введем необходимые обозначения. Условимся, что наря-

ду с L рассматривается краевая задача L̃ = L(q̃(x), h̃, H̃) того же вида, но

с другими коэффициентами. Если некоторый символ обозначает объект, от-

носящийся к задаче L, то символ γ̃ будет обозначать аналогичный объект,

относящийся к L̃, а γ̂ := γ − γ̃.
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Рассмотрим следующую постановку обратной задачи: восстановить диф-

ференциальный оператор по двум спектрам краевых задач с общим диффе-

ренциальным уравнением и одним общим краевым условием. Для определен-

ности пусть общим является краевое условие в точке x = 0.

Пусть {λn}n≥0 и {µn}n≥0 – собственные значения краевых задач L и L1

соответственно, где L1 определена следующим образом

`y = −y′′ + q(x)y = λy, 0 < x < π,

U(y) = y′(0)− hy(0) = 0, V (y) = y(π) = 0.

Рассмотрим следующую обратную задачу.

Задача 4.1. По заданным двум спектрам {λn}n≥0 и {µn}n≥0 построить

потенциал q(x) и коэффициенты h и H в краевых условиях.

Сформулируем теорему единственности решения задачи 4.1.

Теорема 4.1. Если λn = λ̃n, µn = µ̃n, n ≥ 0, то q(x) = q̃(x) п.в. на

(0, π), h = h̃ и H = H̃. Таким образом, задание двух спектров {λn, µn}n≥0

однозначно определяет потенциал и коэффициенты краевых условий.

Замечание 4.1. Ясно, что полученный результат остается также верным

и в случае, когда вместо {λn} и {µn} задаются два спектра {λn} и {λ0n}

краевых задач L и L0, где L0 определена следующим образом

`y = −y′′ + q(x)y = λy, 0 < x < π,

U(y) = y(0) = 0, V (y) = y′(π) +Hy(π) = 0,

т.е. остается верным для следующей обратной задачи.

Задача 4.2. По заданным двум спектрам {λn}n≥0 и {λ0n}n≥0 построить

потенциал q(x) и коэффициенты h и H в краевых условиях.
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Теорема единственности для задачи 4.2 имеет следующий вид.

Теорема 4.2. Если λn = λ̃n, λ
0
n = λ̃0n, n ≥ 0, то q(x) = q̃(x) п.в. на

(0, π), h = h̃ b H = H̃. Таким образом, задание двух спектров {λn, λ0n}n≥0

однозначно определяет потенциал и коэффициенты краевых условий..

Отметим, что теорема 4.2 может быть сведена к теореме 4.1 заменой x→

π − x.
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Заключение

Таким образом в данной работе было введено понятие спектра для опера-

тора Штурма-Лиувилля (1.1). Изучены его асимптотические и структурные

свойства. Так исследованы свойства собственных функций.

Рассмотрены операторы преобразования и, с их помощью, доказана тео-

рема единственности решения обратной задачи по двум спектрам.
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